organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(Di­methyl­amino)benzyl­­idene]-2,6-di­methyl­cyclo­hexa-2,5-dienone

aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 2 July 2009; accepted 3 August 2009; online 8 August 2009)

The title compound, C17H19NO, crystallized with two mol­ecules per asymmetric unit. C—H⋯O hydrogen bonds lead to infinite chains along [100]. According to graph-set theory, the descriptor C11(13)C11(13) can be assigned.

Related literature

For a related structure, see: Kawai et al. (2004[Kawai, H., Nagasu, T., Takeda, T., Fujiwara, K., Tsuji, T., Ohkita, M., Nishida, J. & Suzuki, T. (2004). Tetrahedron Lett. 45, 4553-4558.]). For background to graph set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For the preparation, see: Richter et al. (2009[Richter, D., Hampel, N., Singer, T., Ofial, A. R. & Mayr, H. (2009). Eur. J. Org. Chem. pp. 3203-3211.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO

  • Mr = 253.34

  • Monoclinic, P 21 /c

  • a = 14.5357 (3) Å

  • b = 7.2759 (2) Å

  • c = 27.5473 (5) Å

  • β = 104.6463 (14)°

  • V = 2818.74 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.24 × 0.20 × 0.19 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 18635 measured reflections

  • 5725 independent reflections

  • 3685 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.131

  • S = 1.02

  • 5725 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O1i 0.98 2.51 3.456 (2) 163
C34—H34B⋯O2i 0.98 2.36 3.328 (2) 169
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of (I) contains two complete molecules of the title compound. Figure 1 shows one of the two independent molecules.

A major difference between the two symmetrically independent molecules is found in the angle formed by the planes of the two C6-rings within a molecule. This angle is found to be 35.19 (7)° between the planes in one molecule but only 20.00 (7)° between the planes in the other molecule (Fig. 2). With a bulky naphthyl substituent at the C atom linking the two rings, an angle of 43.16 (6)° is observed [Kawai et al. (2004)].

The molecular packing, which is shown in Figure 3, is dominated by two C—H···O hydrogen bonds leading to infinite chains along [100]. Each of the chains is built up by 13 atoms and contains one donor atom and one acceptor atom. According to graph set theory [Bernstein et al. (1995), Etter et al. (1990)] the descriptor C11(13)C11(13) can be assigned. The strands are cross-linked by very weak C—H···C contacts with H···C distances of at least 2.79 Å (Table 1).

Related literature top

For a related structure, see: Kawai et al. (2004). For background to graph set analysis, see: Bernstein et al. (1995); Etter et al. (1990). For the preparation, see: Richter et al. (2009).

Experimental top

The title compound was prepared under an atmosphere of dry N2 from (4-hydroxy-3,5-dimethylphenyl)[4-(dimethylamino)phenyl]methanol [Richter et al. (2009)] (200 mg, 0.737 mmol) that was dissolved in dry CH2Cl2 (60 ml) and cooled to 0 °C. Then etheral HBF4-solution (0.110 ml, 0.811 mmol) was added at 0 °C. After 5 min, NEt3 (0.133 ml, 0.958 mmol) was added. The cooling bath was removed and stirring was continued for 3 h before the mixture was washed with water (3 times). The organic layer was dried (MgSO4) and the solvent was removed under reduced pressure. Crystals were obtained by slow cooling of a warm solution of the title compound in acetonitrile. Yield: 149 mg (80%), mp 127–128 °C.

Refinement top

The H atoms were positioned geometrically (C—H = 0.98 Å for CH3, 0.95 Å for CH) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C) for CH, Uiso(H) = 1.5Ueq(C) for CH3].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (one molecule out of two of the asymmetric unit), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Schematic representation of the different orientations of the aromatic planes in the two molecules, viewed along the C–H bond of the linking group and parallel to the dienone ring planes. For clarity all atoms connected to the aromatic rings have been omitted.
[Figure 3] Fig. 3. The packing of the title compound, viewed along [010]. Dashed lines indicate hydrogen bonds of the type C—H···O. The solid, red bonds link the 13 atoms involved in one of the two different hydrogen bonds leading to chains along [100].
4-[4-(Dimethylamino)benzylidene]-2,6-dimethylcyclohexa-2,5-dienone top
Crystal data top
C17H19NOF(000) = 1088
Mr = 253.34Dx = 1.194 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10514 reflections
a = 14.5357 (3) Åθ = 3.1–26.4°
b = 7.2759 (2) ŵ = 0.07 mm1
c = 27.5473 (5) ÅT = 200 K
β = 104.6463 (14)°Block, red
V = 2818.74 (11) Å30.24 × 0.20 × 0.19 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3685 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.051
MONTEL, graded multilayered X-ray optics monochromatorθmax = 26.4°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 1818
CCD; rotation images; thick slices, ϕ/ω scank = 99
18635 measured reflectionsl = 3334
5725 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 0.2713P]
where P = (Fo2 + 2Fc2)/3
5725 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H19NOV = 2818.74 (11) Å3
Mr = 253.34Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.5357 (3) ŵ = 0.07 mm1
b = 7.2759 (2) ÅT = 200 K
c = 27.5473 (5) Å0.24 × 0.20 × 0.19 mm
β = 104.6463 (14)°
Data collection top
Nonius KappaCCD
diffractometer
3685 reflections with I > 2σ(I)
18635 measured reflectionsRint = 0.051
5725 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
5725 reflectionsΔρmin = 0.18 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31746 (8)0.77657 (19)0.46546 (5)0.0626 (4)
N10.37909 (9)0.7322 (2)0.45672 (5)0.0497 (4)
C10.24976 (11)0.7798 (2)0.44563 (6)0.0428 (4)
C20.26523 (11)0.7680 (2)0.39087 (6)0.0441 (4)
C30.19006 (11)0.7670 (2)0.37098 (6)0.0425 (4)
H30.20140.76390.33550.051*
C40.09286 (11)0.7703 (2)0.40056 (6)0.0374 (4)
C50.07886 (11)0.7914 (2)0.45418 (5)0.0372 (4)
H50.01570.79920.47470.045*
C60.15154 (11)0.8003 (2)0.47623 (5)0.0372 (4)
C70.36678 (12)0.7568 (3)0.35963 (7)0.0621 (5)
H7A0.36750.75440.32400.093*
H7B0.40220.86420.36640.093*
H7C0.39640.64460.36820.093*
C80.13802 (12)0.8369 (2)0.53118 (6)0.0477 (4)
H8A0.06990.84580.54750.072*
H8B0.16600.73620.54630.072*
H8C0.16930.95270.53570.072*
C90.02032 (11)0.7623 (2)0.37695 (6)0.0394 (4)
H90.03990.76990.34140.047*
C100.08090 (10)0.7442 (2)0.39752 (5)0.0350 (4)
C110.14350 (11)0.8184 (2)0.37151 (5)0.0395 (4)
H110.11790.87160.33940.047*
C120.24043 (11)0.8172 (2)0.39054 (6)0.0413 (4)
H120.27980.87350.37200.050*
C130.28220 (11)0.7344 (2)0.43683 (6)0.0385 (4)
C140.22023 (11)0.6473 (2)0.46155 (5)0.0395 (4)
H140.24610.58260.49190.047*
C150.12351 (11)0.6539 (2)0.44275 (5)0.0370 (4)
H150.08400.59560.46080.044*
C160.41687 (13)0.6822 (3)0.50911 (7)0.0713 (6)
H16A0.39460.77040.53050.107*
H16B0.48650.68380.51730.107*
H16C0.39490.55860.51490.107*
C170.43927 (13)0.8433 (3)0.43384 (8)0.0752 (6)
H17A0.42620.81420.39800.113*
H17B0.50610.81730.45000.113*
H17C0.42620.97370.43800.113*
O20.37910 (8)0.25472 (19)0.34392 (5)0.0634 (4)
N20.33071 (9)0.24688 (19)0.33231 (5)0.0443 (4)
C180.30784 (12)0.2279 (2)0.32776 (6)0.0444 (4)
C190.31707 (11)0.1739 (2)0.27539 (6)0.0410 (4)
C200.23808 (10)0.1486 (2)0.25927 (6)0.0386 (4)
H200.24530.11160.22540.046*
C210.14294 (10)0.1744 (2)0.29038 (5)0.0348 (4)
C220.13547 (11)0.2196 (2)0.34218 (6)0.0387 (4)
H220.07390.23290.36410.046*
C230.21173 (11)0.2438 (2)0.36091 (6)0.0404 (4)
C240.41593 (11)0.1501 (3)0.24209 (7)0.0547 (5)
H24A0.41210.11810.20810.082*
H24B0.45150.26510.24110.082*
H24C0.44850.05160.25540.082*
C250.20350 (13)0.2812 (3)0.41543 (6)0.0535 (5)
H25A0.13630.29530.43310.080*
H25B0.23090.17830.43000.080*
H25C0.23790.39440.41880.080*
C260.06843 (10)0.1560 (2)0.26859 (5)0.0348 (4)
H260.08670.11240.23500.042*
C270.03223 (10)0.1899 (2)0.28665 (5)0.0322 (4)
C280.09255 (10)0.1161 (2)0.25908 (5)0.0344 (4)
H280.06480.05090.22910.041*
C290.18928 (10)0.1334 (2)0.27339 (5)0.0356 (4)
H290.22680.07770.25380.043*
C300.23412 (10)0.2326 (2)0.31684 (5)0.0337 (4)
C310.17424 (10)0.3170 (2)0.34342 (5)0.0352 (4)
H310.20150.39040.37200.042*
C320.07772 (10)0.2950 (2)0.32885 (5)0.0340 (4)
H320.03990.35290.34790.041*
C330.37588 (11)0.3514 (3)0.37678 (6)0.0547 (5)
H33A0.35450.47950.37240.082*
H33B0.44510.34680.38200.082*
H33C0.35860.29870.40600.082*
C340.39029 (11)0.1576 (3)0.30456 (7)0.0613 (5)
H34A0.37890.02470.30380.092*
H34B0.45720.18230.32090.092*
H34C0.37510.20510.27020.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (7)0.0853 (11)0.0637 (8)0.0013 (7)0.0201 (6)0.0060 (7)
N10.0368 (8)0.0599 (10)0.0510 (9)0.0005 (7)0.0087 (7)0.0015 (7)
C10.0380 (10)0.0389 (10)0.0521 (10)0.0030 (7)0.0124 (8)0.0058 (8)
C20.0385 (10)0.0414 (11)0.0488 (10)0.0007 (8)0.0045 (8)0.0039 (8)
C30.0431 (10)0.0449 (11)0.0361 (9)0.0003 (8)0.0036 (7)0.0007 (7)
C40.0378 (9)0.0333 (9)0.0386 (9)0.0011 (7)0.0053 (7)0.0010 (7)
C50.0364 (9)0.0357 (10)0.0375 (9)0.0031 (7)0.0055 (7)0.0011 (7)
C60.0435 (10)0.0293 (9)0.0387 (9)0.0022 (7)0.0099 (7)0.0004 (7)
C70.0396 (10)0.0792 (15)0.0615 (12)0.0030 (10)0.0018 (8)0.0074 (10)
C80.0514 (11)0.0480 (11)0.0455 (10)0.0000 (8)0.0158 (8)0.0053 (8)
C90.0430 (10)0.0396 (10)0.0343 (8)0.0027 (7)0.0075 (7)0.0001 (7)
C100.0376 (9)0.0342 (9)0.0333 (8)0.0021 (7)0.0093 (7)0.0037 (7)
C110.0481 (11)0.0388 (10)0.0329 (8)0.0061 (8)0.0129 (7)0.0021 (7)
C120.0440 (10)0.0403 (10)0.0444 (9)0.0017 (8)0.0199 (8)0.0006 (8)
C130.0370 (9)0.0378 (10)0.0410 (9)0.0029 (7)0.0108 (7)0.0065 (7)
C140.0435 (10)0.0419 (10)0.0330 (8)0.0071 (8)0.0096 (7)0.0011 (7)
C150.0418 (10)0.0361 (10)0.0356 (8)0.0032 (7)0.0144 (7)0.0003 (7)
C160.0454 (11)0.1020 (18)0.0574 (12)0.0055 (11)0.0036 (9)0.0013 (11)
C170.0449 (12)0.0843 (17)0.0953 (16)0.0098 (11)0.0155 (11)0.0064 (13)
O20.0438 (7)0.0777 (10)0.0766 (9)0.0019 (6)0.0296 (7)0.0172 (7)
N20.0300 (8)0.0539 (10)0.0487 (8)0.0022 (6)0.0097 (6)0.0082 (7)
C180.0397 (10)0.0411 (11)0.0572 (11)0.0015 (8)0.0210 (8)0.0019 (8)
C190.0327 (9)0.0379 (10)0.0519 (10)0.0006 (7)0.0099 (7)0.0001 (8)
C200.0365 (9)0.0383 (10)0.0398 (9)0.0006 (7)0.0073 (7)0.0029 (7)
C210.0339 (9)0.0324 (9)0.0375 (8)0.0014 (7)0.0081 (7)0.0002 (7)
C220.0337 (9)0.0408 (10)0.0400 (9)0.0033 (7)0.0066 (7)0.0003 (7)
C230.0436 (10)0.0369 (10)0.0437 (9)0.0036 (7)0.0165 (8)0.0023 (7)
C240.0359 (10)0.0649 (13)0.0630 (11)0.0020 (9)0.0117 (8)0.0051 (9)
C250.0613 (12)0.0562 (13)0.0482 (10)0.0044 (9)0.0237 (9)0.0043 (9)
C260.0331 (9)0.0354 (9)0.0345 (8)0.0013 (7)0.0060 (7)0.0011 (7)
C270.0324 (9)0.0325 (9)0.0314 (8)0.0024 (7)0.0074 (6)0.0025 (6)
C280.0370 (9)0.0363 (9)0.0296 (8)0.0012 (7)0.0080 (6)0.0004 (6)
C290.0365 (9)0.0372 (10)0.0366 (8)0.0007 (7)0.0159 (7)0.0013 (7)
C300.0284 (8)0.0368 (10)0.0360 (8)0.0004 (7)0.0084 (6)0.0042 (7)
C310.0357 (9)0.0363 (10)0.0327 (8)0.0024 (7)0.0070 (7)0.0022 (7)
C320.0335 (9)0.0352 (9)0.0342 (8)0.0021 (7)0.0104 (7)0.0008 (7)
C330.0362 (10)0.0668 (14)0.0552 (10)0.0054 (9)0.0006 (8)0.0090 (9)
C340.0337 (10)0.0803 (15)0.0735 (13)0.0009 (9)0.0201 (9)0.0154 (11)
Geometric parameters (Å, º) top
O1—C11.2406 (18)O2—C181.2418 (18)
N1—C131.376 (2)N2—C301.3642 (18)
N1—C171.447 (2)N2—C341.446 (2)
N1—C161.455 (2)N2—C331.450 (2)
C1—C21.470 (2)C18—C231.468 (2)
C1—C61.471 (2)C18—C191.468 (2)
C2—C31.341 (2)C19—C201.344 (2)
C2—C71.511 (2)C19—C241.507 (2)
C3—C41.442 (2)C20—C211.443 (2)
C3—H30.9500C20—H200.9500
C4—C91.373 (2)C21—C261.371 (2)
C4—C51.447 (2)C21—C221.441 (2)
C5—C61.347 (2)C22—C231.347 (2)
C5—H50.9500C22—H220.9500
C6—C81.500 (2)C23—C251.501 (2)
C7—H7A0.9800C24—H24A0.9800
C7—H7B0.9800C24—H24B0.9800
C7—H7C0.9800C24—H24C0.9800
C8—H8A0.9800C25—H25A0.9800
C8—H8B0.9800C25—H25B0.9800
C8—H8C0.9800C25—H25C0.9800
C9—C101.443 (2)C26—C271.4426 (19)
C9—H90.9500C26—H260.9500
C10—C111.401 (2)C27—C281.404 (2)
C10—C151.406 (2)C27—C321.409 (2)
C11—C121.374 (2)C28—C291.367 (2)
C11—H110.9500C28—H280.9500
C12—C131.402 (2)C29—C301.409 (2)
C12—H120.9500C29—H290.9500
C13—C141.410 (2)C30—C311.412 (2)
C14—C151.371 (2)C31—C321.368 (2)
C14—H140.9500C31—H310.9500
C15—H150.9500C32—H320.9500
C16—H16A0.9800C33—H33A0.9800
C16—H16B0.9800C33—H33B0.9800
C16—H16C0.9800C33—H33C0.9800
C17—H17A0.9800C34—H34A0.9800
C17—H17B0.9800C34—H34B0.9800
C17—H17C0.9800C34—H34C0.9800
C13—N1—C17119.38 (14)C30—N2—C34120.48 (13)
C13—N1—C16119.30 (14)C30—N2—C33120.93 (13)
C17—N1—C16116.99 (14)C34—N2—C33118.59 (13)
O1—C1—C2121.20 (15)O2—C18—C23120.91 (15)
O1—C1—C6120.85 (15)O2—C18—C19121.12 (15)
C2—C1—C6117.93 (14)C23—C18—C19117.94 (13)
C3—C2—C1119.39 (14)C20—C19—C18119.19 (14)
C3—C2—C7123.14 (16)C20—C19—C24123.09 (15)
C1—C2—C7117.47 (15)C18—C19—C24117.72 (14)
C2—C3—C4123.54 (15)C19—C20—C21123.81 (14)
C2—C3—H3118.2C19—C20—H20118.1
C4—C3—H3118.2C21—C20—H20118.1
C9—C4—C3119.46 (14)C26—C21—C22125.83 (13)
C9—C4—C5124.14 (14)C26—C21—C20118.16 (13)
C3—C4—C5116.32 (14)C22—C21—C20116.00 (13)
C6—C5—C4122.78 (14)C23—C22—C21123.07 (14)
C6—C5—H5118.6C23—C22—H22118.5
C4—C5—H5118.6C21—C22—H22118.5
C5—C6—C1119.69 (14)C22—C23—C18119.83 (14)
C5—C6—C8123.10 (14)C22—C23—C25122.80 (15)
C1—C6—C8117.18 (14)C18—C23—C25117.34 (14)
C2—C7—H7A109.5C19—C24—H24A109.5
C2—C7—H7B109.5C19—C24—H24B109.5
H7A—C7—H7B109.5H24A—C24—H24B109.5
C2—C7—H7C109.5C19—C24—H24C109.5
H7A—C7—H7C109.5H24A—C24—H24C109.5
H7B—C7—H7C109.5H24B—C24—H24C109.5
C6—C8—H8A109.5C23—C25—H25A109.5
C6—C8—H8B109.5C23—C25—H25B109.5
H8A—C8—H8B109.5H25A—C25—H25B109.5
C6—C8—H8C109.5C23—C25—H25C109.5
H8A—C8—H8C109.5H25A—C25—H25C109.5
H8B—C8—H8C109.5H25B—C25—H25C109.5
C4—C9—C10130.31 (14)C21—C26—C27132.61 (14)
C4—C9—H9114.8C21—C26—H26113.7
C10—C9—H9114.8C27—C26—H26113.7
C11—C10—C15115.83 (13)C28—C27—C32115.29 (13)
C11—C10—C9119.57 (13)C28—C27—C26117.75 (13)
C15—C10—C9124.60 (14)C32—C27—C26126.93 (13)
C12—C11—C10122.60 (14)C29—C28—C27123.11 (13)
C12—C11—H11118.7C29—C28—H28118.4
C10—C11—H11118.7C27—C28—H28118.4
C11—C12—C13121.08 (14)C28—C29—C30120.92 (13)
C11—C12—H12119.5C28—C29—H29119.5
C13—C12—H12119.5C30—C29—H29119.5
N1—C13—C12122.09 (14)N2—C30—C29121.54 (13)
N1—C13—C14121.14 (14)N2—C30—C31121.71 (13)
C12—C13—C14116.74 (14)C29—C30—C31116.75 (13)
C15—C14—C13121.43 (14)C32—C31—C30121.21 (13)
C15—C14—H14119.3C32—C31—H31119.4
C13—C14—H14119.3C30—C31—H31119.4
C14—C15—C10122.08 (14)C31—C32—C27122.56 (13)
C14—C15—H15119.0C31—C32—H32118.7
C10—C15—H15119.0C27—C32—H32118.7
N1—C16—H16A109.5N2—C33—H33A109.5
N1—C16—H16B109.5N2—C33—H33B109.5
H16A—C16—H16B109.5H33A—C33—H33B109.5
N1—C16—H16C109.5N2—C33—H33C109.5
H16A—C16—H16C109.5H33A—C33—H33C109.5
H16B—C16—H16C109.5H33B—C33—H33C109.5
N1—C17—H17A109.5N2—C34—H34A109.5
N1—C17—H17B109.5N2—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
N1—C17—H17C109.5N2—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5
O1—C1—C2—C3178.22 (16)O2—C18—C19—C20179.15 (16)
C6—C1—C2—C33.3 (2)C23—C18—C19—C202.7 (2)
O1—C1—C2—C71.5 (2)O2—C18—C19—C240.6 (2)
C6—C1—C2—C7176.94 (15)C23—C18—C19—C24177.49 (15)
C1—C2—C3—C42.3 (3)C18—C19—C20—C211.1 (2)
C7—C2—C3—C4177.45 (16)C24—C19—C20—C21178.72 (15)
C2—C3—C4—C9177.69 (16)C19—C20—C21—C26175.74 (15)
C2—C3—C4—C55.3 (2)C19—C20—C21—C223.6 (2)
C9—C4—C5—C6179.44 (15)C26—C21—C22—C23176.92 (16)
C3—C4—C5—C62.6 (2)C20—C21—C22—C232.4 (2)
C4—C5—C6—C12.9 (2)C21—C22—C23—C181.3 (2)
C4—C5—C6—C8175.02 (15)C21—C22—C23—C25176.74 (16)
O1—C1—C6—C5175.68 (15)O2—C18—C23—C22178.00 (16)
C2—C1—C6—C55.8 (2)C19—C18—C23—C223.9 (2)
O1—C1—C6—C86.3 (2)O2—C18—C23—C253.9 (2)
C2—C1—C6—C8172.17 (15)C19—C18—C23—C25174.24 (15)
C3—C4—C9—C10172.71 (15)C22—C21—C26—C276.6 (3)
C5—C4—C9—C1010.5 (3)C20—C21—C26—C27172.68 (15)
C4—C9—C10—C11151.45 (17)C21—C26—C27—C28165.06 (16)
C4—C9—C10—C1529.2 (3)C21—C26—C27—C3216.9 (3)
C15—C10—C11—C125.2 (2)C32—C27—C28—C294.1 (2)
C9—C10—C11—C12175.42 (14)C26—C27—C28—C29177.62 (13)
C10—C11—C12—C132.4 (2)C27—C28—C29—C301.7 (2)
C17—N1—C13—C1210.3 (2)C34—N2—C30—C290.8 (2)
C16—N1—C13—C12166.30 (17)C33—N2—C30—C29179.24 (15)
C17—N1—C13—C14171.83 (16)C34—N2—C30—C31179.45 (15)
C16—N1—C13—C1415.9 (2)C33—N2—C30—C310.5 (2)
C11—C12—C13—N1179.73 (15)C28—C29—C30—N2178.22 (14)
C11—C12—C13—C142.3 (2)C28—C29—C30—C312.0 (2)
N1—C13—C14—C15177.92 (14)N2—C30—C31—C32177.05 (14)
C12—C13—C14—C154.1 (2)C29—C30—C31—C323.2 (2)
C13—C14—C15—C101.3 (2)C30—C31—C32—C270.7 (2)
C11—C10—C15—C143.3 (2)C28—C27—C32—C312.9 (2)
C9—C10—C15—C14177.29 (14)C26—C27—C32—C31179.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.982.513.456 (2)163
C34—H34B···O2i0.982.363.328 (2)169
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H19NO
Mr253.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.5357 (3), 7.2759 (2), 27.5473 (5)
β (°) 104.6463 (14)
V3)2818.74 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.20 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18635, 5725, 3685
Rint0.051
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 1.02
No. of reflections5725
No. of parameters351
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.982.513.456 (2)163
C34—H34B···O2i0.982.363.328 (2)169
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKawai, H., Nagasu, T., Takeda, T., Fujiwara, K., Tsuji, T., Ohkita, M., Nishida, J. & Suzuki, T. (2004). Tetrahedron Lett. 45, 4553–4558.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRichter, D., Hampel, N., Singer, T., Ofial, A. R. & Mayr, H. (2009). Eur. J. Org. Chem. pp. 3203–3211.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds