metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-butyl­imino­methyl-5-meth­oxy­phenolato-κ2N,O1)zinc(II)

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qiangqiang_wang@163.com

(Received 4 August 2009; accepted 5 August 2009; online 12 August 2009)

In the centrosymmetric title compound, [Zn(C12H16NO2)2], the ZnII centre is coordinated by two O,N-bidentate Schiff base ligands, resulting in a slightly distorted trans-ZnN2O2 square-planar geometry for the metal ion. Two short intra­molecular C—H⋯O contacts occur in the mol­ecule.

Related literature

For related structures, see: Zhu et al. (2003[Zhu, H.-L., Meng, F.-J., Wang, Z.-D. & Yang, F. (2003). Z. Kristallogr. New Cryst. Struct. 218, 321-322.]); You et al. (2003[You, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025-m1027.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H16NO2)2]

  • Mr = 477.89

  • Monoclinic, P 21 /c

  • a = 13.250 (4) Å

  • b = 4.8845 (15) Å

  • c = 17.858 (5) Å

  • β = 93.555 (5)°

  • V = 1153.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 200 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.811

  • 13300 measured reflections

  • 2856 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.155

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.164

  • S = 1.10

  • 2856 reflections

  • 144 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.8769 (17)
Zn1—N1i 2.004 (2)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.99 2.34 2.763 (3) 105
C9—H9A⋯O1i 0.99 2.55 3.087 (3) 114
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the structures of zinc(II) complexes (Zhu et al., 2003; You et al., 2003), we now report the crystal structure of the title compound, (I).

Compound (I) consists of a ZnII atom and two bidentate salicylal schiff base ligands (Fig. 1). The central ZnII atom exhibits 4-coordination by two N atoms from imine moieties and two O-anions from salicylal groups, forming a slightly distorted square planar geometry (Table 1). Ring Zn1—N1—C7—C1—C2—O1 and Ring Zn1—N1A—C7A—C1A—C2A—O1A, togethor with the two benzene rings, stand in a plane with mean deviation of 0.0489 °. Two short intramolecular C—H···O contacts occur in the molecule (Table 2).

Related literature top

For related structures, see: Zhu et al. (2003); You et al. (2003).

Experimental top

0.5 mmol of zinc oxide, 1 mmol of 4-methoxysalicylaldehyde and 1 mmol of butylamine were dissolved in 10 ml methanol. After 3 ml ammonia was added, the result solution was then heated to 423 K for 10 h in a sealed vessel. The reactor was cooled to room temperature at a rate of 10 K h-1. The mixture was filtered and held at room temperature for 8 d. Colourless blocks of (I) were isolated in 47% yield.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.95—0.99Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and dashed lines indicate hydrogen bonds. Atoms with a label A suffix are generated by the symmetry operator (1–x, 1–y, –z).
Bis(2-butyliminomethyl-5-methoxyphenolato-κ2N,O1)zinc(II) top
Crystal data top
[Zn(C12H16NO2)2]F(000) = 504
Mr = 477.89Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2317 reflections
a = 13.250 (4) Åθ = 2.7–26.5°
b = 4.8845 (15) ŵ = 1.10 mm1
c = 17.858 (5) ÅT = 200 K
β = 93.555 (5)°Block, colorless
V = 1153.6 (6) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
2856 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.155
ϕ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.734, Tmax = 0.811k = 66
13300 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.1817P]
where P = (Fo2 + 2Fc2)/3
2856 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Zn(C12H16NO2)2]V = 1153.6 (6) Å3
Mr = 477.89Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.250 (4) ŵ = 1.10 mm1
b = 4.8845 (15) ÅT = 200 K
c = 17.858 (5) Å0.30 × 0.30 × 0.20 mm
β = 93.555 (5)°
Data collection top
Bruker APEX CCD
diffractometer
2856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2438 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.811Rint = 0.155
13300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.10Δρmax = 1.13 e Å3
2856 reflectionsΔρmin = 0.67 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40796 (16)0.2347 (5)0.15609 (13)0.0375 (5)
C20.3582 (2)0.0191 (5)0.11694 (18)0.0403 (6)
C30.26490 (19)0.0732 (6)0.14142 (16)0.0437 (6)
H30.22900.21360.11430.052*
C40.2254 (2)0.0377 (5)0.20399 (17)0.0425 (6)
C50.27511 (19)0.2446 (6)0.24413 (15)0.0488 (6)
H50.24750.31960.28750.059*
C60.36504 (18)0.3396 (6)0.22021 (13)0.0470 (6)
H60.39950.48110.24790.056*
C70.49911 (17)0.3519 (5)0.13234 (13)0.0392 (5)
H40.52810.49360.16310.047*
C80.63958 (19)0.4507 (5)0.06201 (16)0.0386 (5)
H8A0.63920.61920.09280.046*
H8B0.63930.50600.00870.046*
C90.73453 (16)0.2898 (5)0.08264 (15)0.0458 (6)
H9A0.73080.11050.05680.055*
H9B0.73910.25510.13740.055*
C100.8289 (2)0.4405 (6)0.0612 (2)0.0523 (7)
H10A0.82120.49140.00750.063*
H10B0.83620.61140.09090.063*
C110.92355 (19)0.2690 (8)0.0748 (2)0.0713 (10)
H11A0.93030.21310.12760.107*
H11B0.98280.37690.06280.107*
H11C0.91880.10590.04280.107*
C120.0780 (2)0.2452 (6)0.18909 (18)0.0582 (8)
H12A0.06830.18950.13640.087*
H12B0.01190.26840.21010.087*
H12C0.11510.41870.19240.087*
N10.54697 (13)0.2884 (4)0.07401 (11)0.0366 (4)
O10.39291 (14)0.0997 (5)0.05842 (11)0.0542 (5)
O20.13414 (17)0.0399 (4)0.23031 (14)0.0539 (6)
Zn10.50000.00000.00000.0382 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (11)0.0452 (13)0.0370 (11)0.0012 (10)0.0067 (9)0.0032 (9)
C20.0334 (14)0.0431 (15)0.0463 (16)0.0002 (9)0.0159 (11)0.0018 (9)
C30.0340 (12)0.0495 (13)0.0491 (15)0.0069 (12)0.0153 (10)0.0039 (12)
C40.0299 (13)0.0518 (15)0.0474 (16)0.0030 (10)0.0165 (11)0.0061 (11)
C50.0444 (13)0.0631 (17)0.0407 (13)0.0016 (12)0.0176 (10)0.0046 (11)
C60.0440 (13)0.0555 (16)0.0424 (13)0.0034 (12)0.0087 (10)0.0067 (11)
C70.0335 (11)0.0431 (13)0.0409 (12)0.0017 (10)0.0023 (9)0.0012 (10)
C80.0331 (12)0.0362 (11)0.0472 (14)0.0047 (10)0.0089 (10)0.0018 (10)
C90.0311 (11)0.0490 (14)0.0578 (15)0.0058 (10)0.0073 (10)0.0079 (11)
C100.0332 (14)0.0565 (15)0.0681 (19)0.0094 (13)0.0101 (12)0.0000 (15)
C110.0345 (14)0.086 (2)0.094 (2)0.0009 (14)0.0141 (15)0.0003 (19)
C120.0362 (13)0.0653 (19)0.075 (2)0.0047 (13)0.0203 (13)0.0043 (15)
N10.0275 (9)0.0381 (10)0.0446 (10)0.0016 (8)0.0068 (7)0.0031 (8)
O10.0458 (10)0.0578 (12)0.0625 (12)0.0190 (10)0.0321 (9)0.0203 (10)
O20.0384 (11)0.0685 (13)0.0578 (13)0.0067 (9)0.0265 (9)0.0022 (9)
Zn10.0311 (3)0.0394 (3)0.0457 (3)0.00210 (13)0.0137 (2)0.00106 (14)
Geometric parameters (Å, º) top
C1—C21.405 (4)C9—C101.521 (4)
C1—C61.406 (3)C9—H9A0.9900
C1—C71.425 (3)C9—H9B0.9900
C2—O11.304 (3)C10—C111.515 (4)
C2—C31.411 (4)C10—H10A0.9900
C3—C41.374 (4)C10—H10B0.9900
C3—H30.9500C11—H11A0.9800
C4—O21.377 (3)C11—H11B0.9800
C4—C51.382 (4)C11—H11C0.9800
C5—C61.371 (3)C12—O21.426 (4)
C5—H50.9500C12—H12A0.9800
C6—H60.9500C12—H12B0.9800
C7—N11.291 (3)C12—H12C0.9800
C7—H40.9500N1—Zn12.004 (2)
C8—N11.488 (3)Zn1—O11.8769 (17)
C8—C91.510 (3)Zn1—N1i2.004 (2)
C8—H8A0.9900Zn1—O1i1.8769 (17)
C8—H8B0.9900Zn1—O1i1.8769 (17)
C2—C1—C6118.5 (2)C10—C9—H9B109.2
C2—C1—C7122.2 (2)H9A—C9—H9B107.9
C6—C1—C7119.3 (2)C11—C10—C9112.2 (3)
O1—C2—C1123.7 (3)C11—C10—H10A109.2
O1—C2—C3117.7 (2)C9—C10—H10A109.2
C1—C2—C3118.6 (3)C11—C10—H10B109.2
C4—C3—C2120.8 (3)C9—C10—H10B109.2
C4—C3—H3119.6H10A—C10—H10B107.9
C2—C3—H3119.6C10—C11—H11A109.5
C3—C4—O2123.8 (3)C10—C11—H11B109.5
C3—C4—C5121.1 (3)H11A—C11—H11B109.5
O2—C4—C5115.1 (3)C10—C11—H11C109.5
C6—C5—C4118.8 (2)H11A—C11—H11C109.5
C6—C5—H5120.6H11B—C11—H11C109.5
C4—C5—H5120.6O2—C12—H12A109.5
C5—C6—C1122.2 (2)O2—C12—H12B109.5
C5—C6—H6118.9H12A—C12—H12B109.5
C1—C6—H6118.9O2—C12—H12C109.5
N1—C7—C1127.7 (2)H12A—C12—H12C109.5
N1—C7—H4116.1H12B—C12—H12C109.5
C1—C7—H4116.1C7—N1—C8116.0 (2)
N1—C8—C9111.7 (2)C7—N1—Zn1123.59 (15)
N1—C8—H8A109.3C8—N1—Zn1120.33 (16)
C9—C8—H8A109.3C2—O1—Zn1130.26 (18)
N1—C8—H8B109.3C4—O2—C12117.3 (2)
C9—C8—H8B109.3O1i—Zn1—O1180.0
H8A—C8—H8B107.9O1i—Zn1—N1i91.74 (8)
C8—C9—C10111.9 (2)O1—Zn1—N1i88.26 (8)
C8—C9—H9A109.2O1i—Zn1—N188.26 (8)
C10—C9—H9A109.2O1—Zn1—N191.74 (8)
C8—C9—H9B109.2N1i—Zn1—N1180.0
C6—C1—C2—O1177.6 (3)C9—C8—N1—C7104.5 (3)
C7—C1—C2—O13.3 (4)C9—C8—N1—Zn177.6 (2)
C6—C1—C2—C33.2 (4)C1—C2—O1—Zn110.8 (4)
C7—C1—C2—C3175.9 (2)C3—C2—O1—Zn1168.5 (2)
O1—C2—C3—C4178.1 (3)C3—C4—O2—C120.7 (4)
C1—C2—C3—C42.6 (4)C5—C4—O2—C12177.6 (3)
C2—C3—C4—O2179.0 (3)C2—O1—Zn1—O1i103.5 (2)
C2—C3—C4—C50.8 (4)C2—O1—Zn1—O1i103.5 (2)
C3—C4—C5—C60.3 (4)C2—O1—Zn1—N1i169.8 (3)
O2—C4—C5—C6178.0 (2)C2—O1—Zn1—N110.2 (3)
C4—C5—C6—C10.3 (4)C7—N1—Zn1—O1i175.0 (2)
C2—C1—C6—C52.1 (4)C8—N1—Zn1—O1i2.69 (17)
C7—C1—C6—C5177.0 (2)C7—N1—Zn1—O1i175.0 (2)
C2—C1—C7—N11.5 (4)C8—N1—Zn1—O1i2.69 (17)
C6—C1—C7—N1177.5 (2)C7—N1—Zn1—O15.0 (2)
N1—C8—C9—C10172.7 (2)C8—N1—Zn1—O1177.31 (17)
C8—C9—C10—C11174.5 (3)C7—N1—Zn1—N1i104.5 (4)
C1—C7—N1—C8178.5 (2)C8—N1—Zn1—N1i73.1 (2)
C1—C7—N1—Zn10.8 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.992.342.763 (3)105
C9—H9A···O1i0.992.553.087 (3)114
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H16NO2)2]
Mr477.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.250 (4), 4.8845 (15), 17.858 (5)
β (°) 93.555 (5)
V3)1153.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.734, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
13300, 2856, 2438
Rint0.155
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.164, 1.10
No. of reflections2856
No. of parameters144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.67

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.8769 (17)Zn1—N1i2.004 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.992.342.763 (3)105
C9—H9A···O1i0.992.553.087 (3)114
Symmetry code: (i) x+1, y, z.
 

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025–m1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Meng, F.-J., Wang, Z.-D. & Yang, F. (2003). Z. Kristallogr. New Cryst. Struct. 218, 321–322.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds