organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Perillartine

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 August 2009; accepted 6 August 2009; online 15 August 2009)

The chiral title compound [systematic name: 4-(1-methyl­vinyl)cyclo­hexene-1-carbaldehyde oxime], C10H15NO, crystallizes with two mol­ecules in the asymmetric unit, one of which shows disorder of its propenyl substituent over two sets of sites in a 50:50 ratio. In both mol­ecules, the six-membered carbaldehyde oxime ring adopts an approximate envelope conformation in which the C atom bearing the propenyl substituent represents the flap position. In both mol­ecules, the plane passing through the propenyl substituent is nearly perpendicular to the mean plane of the six-membered ring [dihedral angles = 84.6 (6) and 87.4 (3)°]. In the crystal, the two independent mol­ecules are linked by a pair O—H⋯N hydrogen bonds across a pseudo-inversion centre, generating a dimer. The unit cell of the known racemate of the title compound is similar to the cell found here, but with space group P[\overline{1}].

Related literature

Perillartine or perillartin [(S)-4-(prop-1-en-2-yl)cyclo­hex-1-ene carbaldehyde oxime], the oxime of perillaldehyde, is 2000 times sweeter than sucrose; see the handbook of artificial sweeteners by O'Brien Nabors & Gelardi (2001[O'Brien Nabors, L. & Gelardi, R. C. (2001). Alternative Sweeteners, 3rd ed. Boca Raton: CRC Press.]). For the crystal structure of the racemic compound, see: Hooft et al. (1990[Hooft, R. W. W., van der Sluis, P., Kanters, J. A. & Kroon, J. (1990). Acta Cryst. C46, 1133-1135.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO

  • Mr = 165.23

  • Triclinic, P 1

  • a = 7.2679 (6) Å

  • b = 8.1702 (7) Å

  • c = 8.9426 (8) Å

  • α = 105.150 (1)°

  • β = 95.658 (1)°

  • γ = 104.602 (1)°

  • V = 488.25 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.48 × 0.42 × 0.22 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: none

  • 4074 measured reflections

  • 2078 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.139

  • S = 1.07

  • 2078 reflections

  • 234 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 (4) 2.00 (2) 2.831 (4) 164 (5)
O2—H2⋯N1 0.85 (4) 2.04 (2) 2.811 (4) 150 (4)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

Perillartine or perillartin [(S)-4-(prop-1-en-2-yl)cyclohex-1-ene carbaldehyde oxime], the oxime of perillaldehyde, is 2000 times sweeter than sucrose; see the handbook of artificial sweeteners by O'Brien Nabors & Gelardi (2001). For the crystal structure of the racemic compound, see: Hooft et al. (1990).

Experimental top

Hydroxylamine hydrochloride (3.15 g, 0.045 mol) in water (50 ml) was treated with sodium carbonate (2.12 g, 0.02 mol). To this solution was added perillaldehyde (4.50 g, 0.03 mol). The mixture was kept at 318 K for 2 h. The solution was cooled and the solid that formed was heated in water for another 2 h. This was repeated a second time. The product was recrystallized from ethyl acetate to yield colourless blocks of (I) (yield 5.5 g, 80%); m.p. 374–375 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.85±0.01 Å; their temperature factors were freely refined.

One of the propenyl groups is disordered over two positions; the disorder could not be refined, and was assumed to be a 1:1 type of disorder that involved only the terminal carbon atoms. The C–C single bond distance was restrained to 1.54±0.01 Å and the double bond distance to 1.35±0.01 Å. The displacement factors of the primed atoms were restrained to neqrly equal those of the umprimed ones, and the anisotropic displacement factors were restrained to be nearly isotropic.

Friedel pairs were merged. The configuration of the molecule was assumed to be that of the chiral starting reagent (i.e., S-configuration).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
4-(1-Methylvinyl)cyclohexene-1-carbaldehyde oxime top
Crystal data top
C10H15NOZ = 2
Mr = 165.23F(000) = 180
Triclinic, P1Dx = 1.124 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2679 (6) ÅCell parameters from 1889 reflections
b = 8.1702 (7) Åθ = 2.4–26.9°
c = 8.9426 (8) ŵ = 0.07 mm1
α = 105.150 (1)°T = 293 K
β = 95.658 (1)°Block, colorless
γ = 104.602 (1)°0.48 × 0.42 × 0.22 mm
V = 488.25 (7) Å3
Data collection top
Bruker SMART
diffractometer
1457 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.1°, θmin = 2.4°
ϕ and ω scansh = 99
4074 measured reflectionsk = 1010
2078 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0793P)2 + 0.0172P]
where P = (Fo2 + 2Fc2)/3
2078 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.15 e Å3
21 restraintsΔρmin = 0.12 e Å3
Crystal data top
C10H15NOγ = 104.602 (1)°
Mr = 165.23V = 488.25 (7) Å3
Triclinic, P1Z = 2
a = 7.2679 (6) ÅMo Kα radiation
b = 8.1702 (7) ŵ = 0.07 mm1
c = 8.9426 (8) ÅT = 293 K
α = 105.150 (1)°0.48 × 0.42 × 0.22 mm
β = 95.658 (1)°
Data collection top
Bruker SMART
diffractometer
1457 reflections with I > 2σ(I)
4074 measured reflectionsRint = 0.014
2078 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04321 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.15 e Å3
2078 reflectionsΔρmin = 0.12 e Å3
234 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5000 (4)0.5002 (4)0.5001 (3)0.0885 (8)
O20.7482 (4)0.9157 (4)0.6717 (4)0.0922 (8)
N10.4289 (4)0.6405 (4)0.4831 (3)0.0724 (8)
N20.8170 (4)0.7770 (4)0.6971 (3)0.0727 (7)
C10.2564 (5)0.5857 (4)0.4097 (4)0.0699 (8)
H1A0.19320.46490.37750.084*
C20.1551 (5)0.7069 (4)0.3745 (4)0.0657 (8)
C30.0246 (5)0.6464 (4)0.2976 (4)0.0758 (9)
H30.08360.52510.27060.091*
C40.1401 (5)0.7574 (4)0.2510 (4)0.0776 (9)
H4A0.23860.76430.31610.093*
H4B0.20480.70100.14250.093*
C50.0167 (5)0.9448 (4)0.2672 (4)0.0760 (9)
H50.05720.93630.18090.091*
C60.1263 (6)1.0142 (4)0.4182 (6)0.0973 (13)
H6A0.05721.01760.50580.117*
H6B0.20131.13450.42910.117*
C70.2618 (6)0.9016 (5)0.4248 (5)0.0905 (12)
H7A0.35520.92370.35670.109*
H7B0.33200.93540.53140.109*
C80.1413 (5)1.0638 (4)0.2484 (4)0.0784 (10)0.50
C90.2394 (18)1.127 (2)0.3557 (11)0.088 (3)0.50
H9A0.31341.19990.33660.105*0.50
H9B0.23421.09940.45010.105*0.50
C100.1478 (19)1.1072 (18)0.0954 (12)0.093 (3)0.50
H10A0.21241.00170.01070.139*0.50
H10B0.01861.15410.07970.139*0.50
H10C0.21671.19360.09790.139*0.50
C8'0.1413 (5)1.0638 (4)0.2484 (4)0.0784 (10)0.50
C9'0.1960 (17)1.0794 (19)0.1074 (12)0.088 (3)0.50
H9'A0.27721.14870.09640.105*0.50
H9'B0.15291.02100.02000.105*0.50
C10'0.208 (2)1.157 (2)0.3937 (11)0.093 (3)0.50
H10D0.27651.23500.36830.139*0.50
H10E0.09811.22360.47470.139*0.50
H10F0.29221.07020.43030.139*0.50
C110.9893 (5)0.8319 (4)0.7688 (4)0.0733 (9)
H111.05530.95180.79530.088*
C121.0866 (5)0.7107 (4)0.8108 (4)0.0644 (8)
C131.2696 (5)0.7692 (4)0.8782 (5)0.0781 (10)
H131.33070.88980.90170.094*
C141.3864 (5)0.6556 (4)0.9198 (5)0.0798 (10)
H14A1.40610.67631.03280.096*
H14B1.51210.68890.88990.096*
C151.2887 (4)0.4597 (4)0.8383 (4)0.0632 (7)
H151.29490.43910.72620.076*
C161.0754 (4)0.4179 (4)0.8527 (5)0.0746 (9)
H16A1.01340.29210.80530.090*
H16B1.06400.44750.96310.090*
C170.9742 (5)0.5210 (4)0.7724 (5)0.0763 (10)
H17A0.95230.46710.65940.092*
H17B0.84920.51370.80410.092*
C181.3935 (4)0.3442 (4)0.8964 (4)0.0666 (8)
C191.4889 (6)0.2566 (5)0.8038 (5)0.0813 (9)
H19A1.55480.18660.84010.098*
H19B1.49040.26460.70210.098*
C201.3869 (7)0.3355 (6)1.0597 (5)0.0934 (11)
H20A1.45000.25091.07860.140*
H20B1.25480.29981.07330.140*
H20C1.45160.45001.13280.140*
H10.599 (5)0.568 (5)0.568 (5)0.115 (18)*
H20.641 (4)0.866 (5)0.609 (5)0.110 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.096 (2)0.0817 (17)0.1005 (18)0.0444 (17)0.0085 (16)0.0344 (14)
O20.095 (2)0.0784 (16)0.114 (2)0.0444 (16)0.0000 (17)0.0349 (15)
N10.079 (2)0.0743 (18)0.0748 (16)0.0356 (16)0.0104 (15)0.0285 (14)
N20.0716 (19)0.0704 (17)0.0855 (18)0.0333 (15)0.0092 (15)0.0282 (14)
C10.078 (2)0.0649 (19)0.0689 (19)0.0273 (18)0.0089 (17)0.0181 (15)
C20.068 (2)0.0613 (18)0.0666 (18)0.0211 (15)0.0059 (15)0.0160 (14)
C30.071 (2)0.0540 (18)0.090 (2)0.0132 (17)0.0072 (18)0.0111 (16)
C40.065 (2)0.0647 (19)0.090 (2)0.0149 (16)0.0079 (17)0.0122 (17)
C50.0624 (19)0.072 (2)0.091 (2)0.0177 (15)0.0000 (16)0.0272 (17)
C60.082 (2)0.0569 (17)0.134 (3)0.0146 (16)0.035 (2)0.0212 (19)
C70.071 (2)0.068 (2)0.119 (3)0.0139 (18)0.021 (2)0.024 (2)
C80.064 (2)0.067 (2)0.100 (3)0.0135 (16)0.0078 (17)0.0302 (18)
C90.097 (5)0.108 (6)0.076 (3)0.048 (4)0.020 (3)0.040 (3)
C100.103 (5)0.083 (4)0.093 (4)0.033 (4)0.002 (3)0.027 (3)
C8'0.064 (2)0.067 (2)0.100 (3)0.0135 (16)0.0078 (17)0.0302 (18)
C9'0.097 (5)0.108 (6)0.076 (3)0.048 (4)0.020 (3)0.040 (3)
C10'0.103 (5)0.083 (4)0.093 (4)0.033 (4)0.002 (3)0.027 (3)
C110.075 (2)0.0609 (19)0.086 (2)0.0230 (18)0.0118 (18)0.0229 (16)
C120.063 (2)0.0578 (17)0.0732 (18)0.0205 (15)0.0092 (15)0.0195 (14)
C130.064 (2)0.0537 (18)0.107 (3)0.0101 (16)0.0006 (18)0.0200 (17)
C140.057 (2)0.0608 (19)0.112 (3)0.0107 (16)0.0085 (18)0.0231 (18)
C150.0576 (16)0.0601 (16)0.0705 (17)0.0166 (13)0.0037 (13)0.0203 (13)
C160.0581 (18)0.0659 (18)0.100 (2)0.0123 (15)0.0015 (16)0.0355 (18)
C170.056 (2)0.066 (2)0.105 (3)0.0164 (16)0.0043 (17)0.0292 (18)
C180.0528 (17)0.0590 (18)0.082 (2)0.0124 (15)0.0022 (14)0.0187 (15)
C190.080 (2)0.0733 (19)0.092 (2)0.0299 (18)0.0063 (18)0.0227 (17)
C200.094 (3)0.107 (3)0.095 (2)0.041 (2)0.010 (2)0.047 (2)
Geometric parameters (Å, º) top
O1—N11.407 (3)C9'—H9'A0.9300
O1—H10.85 (4)C9'—H9'B0.9300
O2—N21.408 (3)C10'—H10D0.9600
O2—H20.85 (4)C10'—H10E0.9600
N1—C11.266 (4)C10'—H10F0.9600
N2—C111.261 (5)C11—C121.455 (4)
C1—C21.451 (4)C11—H110.9300
C1—H1A0.9300C12—C131.316 (5)
C2—C31.320 (5)C12—C171.489 (5)
C2—C71.506 (5)C13—C141.495 (4)
C3—C41.487 (4)C13—H130.9300
C3—H30.9300C14—C151.520 (4)
C4—C51.529 (5)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—C181.511 (4)
C5—C61.500 (5)C15—C161.527 (4)
C5—C81.514 (4)C15—H150.9800
C5—H50.9800C16—C171.514 (4)
C6—C71.515 (5)C16—H16A0.9700
C6—H6A0.9700C16—H16B0.9700
C6—H6B0.9700C17—H17A0.9700
C7—H7A0.9700C17—H17B0.9700
C7—H7B0.9700C18—C191.316 (5)
C8—C91.327 (8)C18—C201.485 (5)
C8—C101.500 (8)C19—H19A0.9300
C9—H9A0.9300C19—H19B0.9300
C9—H9B0.9300C20—H20A0.9600
C10—H10A0.9600C20—H20B0.9600
C10—H10B0.9600C20—H20C0.9600
C10—H10C0.9600
N1—O1—H194 (3)H10E—C10'—H10F109.5
N2—O2—H2106 (3)N2—C11—C12121.0 (3)
C1—N1—O1111.9 (3)N2—C11—H11119.5
C11—N2—O2112.1 (3)C12—C11—H11119.5
N1—C1—C2121.6 (3)C13—C12—C11120.0 (3)
N1—C1—H1A119.2C13—C12—C17121.9 (3)
C2—C1—H1A119.2C11—C12—C17118.0 (3)
C3—C2—C1120.4 (3)C12—C13—C14124.6 (3)
C3—C2—C7121.3 (3)C12—C13—H13117.7
C1—C2—C7118.3 (3)C14—C13—H13117.7
C2—C3—C4125.1 (3)C13—C14—C15112.1 (3)
C2—C3—H3117.5C13—C14—H14A109.2
C4—C3—H3117.5C15—C14—H14A109.2
C3—C4—C5112.7 (3)C13—C14—H14B109.2
C3—C4—H4A109.1C15—C14—H14B109.2
C5—C4—H4A109.1H14A—C14—H14B107.9
C3—C4—H4B109.1C18—C15—C14112.0 (2)
C5—C4—H4B109.1C18—C15—C16114.2 (2)
H4A—C4—H4B107.8C14—C15—C16108.9 (3)
C6—C5—C8114.0 (3)C18—C15—H15107.1
C6—C5—C4109.6 (3)C14—C15—H15107.1
C8—C5—C4111.3 (3)C16—C15—H15107.1
C6—C5—H5107.2C17—C16—C15111.1 (2)
C8—C5—H5107.2C17—C16—H16A109.4
C4—C5—H5107.2C15—C16—H16A109.4
C5—C6—C7112.3 (3)C17—C16—H16B109.4
C5—C6—H6A109.2C15—C16—H16B109.4
C7—C6—H6A109.2H16A—C16—H16B108.0
C5—C6—H6B109.2C12—C17—C16112.7 (3)
C7—C6—H6B109.2C12—C17—H17A109.0
H6A—C6—H6B107.9C16—C17—H17A109.0
C2—C7—C6111.9 (3)C12—C17—H17B109.0
C2—C7—H7A109.2C16—C17—H17B109.0
C6—C7—H7A109.2H17A—C17—H17B107.8
C2—C7—H7B109.2C19—C18—C20122.0 (3)
C6—C7—H7B109.2C19—C18—C15120.0 (3)
H7A—C7—H7B107.9C20—C18—C15118.0 (3)
C9—C8—C10120.8 (8)C18—C19—H19A120.0
C9—C8—C5124.4 (6)C18—C19—H19B120.0
C10—C8—C5114.7 (6)H19A—C19—H19B120.0
C8—C9—H9A120.0C18—C20—H20A109.5
C8—C9—H9B120.0C18—C20—H20B109.5
H9A—C9—H9B120.0H20A—C20—H20B109.5
H9'A—C9'—H9'B120.0C18—C20—H20C109.5
H10D—C10'—H10E109.5H20A—C20—H20C109.5
H10D—C10'—H10F109.5H20B—C20—H20C109.5
O1—N1—C1—C2178.2 (3)O2—N2—C11—C12178.3 (3)
N1—C1—C2—C3179.9 (3)N2—C11—C12—C13176.4 (3)
N1—C1—C2—C71.2 (5)N2—C11—C12—C172.5 (5)
C1—C2—C3—C4178.0 (3)C11—C12—C13—C14177.1 (3)
C7—C2—C3—C40.7 (6)C17—C12—C13—C141.7 (6)
C2—C3—C4—C513.1 (5)C12—C13—C14—C1515.1 (6)
C3—C4—C5—C642.4 (4)C13—C14—C15—C18172.6 (3)
C3—C4—C5—C8169.4 (3)C13—C14—C15—C1645.3 (4)
C8—C5—C6—C7174.0 (4)C18—C15—C16—C17172.3 (3)
C4—C5—C6—C760.5 (5)C14—C15—C16—C1761.8 (4)
C3—C2—C7—C615.8 (5)C13—C12—C17—C1613.8 (5)
C1—C2—C7—C6165.5 (3)C11—C12—C17—C16167.3 (3)
C5—C6—C7—C246.7 (5)C15—C16—C17—C1245.5 (4)
C6—C5—C8—C951.0 (9)C14—C15—C18—C19109.8 (4)
C4—C5—C8—C973.5 (8)C16—C15—C18—C19125.9 (3)
C6—C5—C8—C10129.0 (7)C14—C15—C18—C2069.4 (4)
C4—C5—C8—C10106.4 (7)C16—C15—C18—C2054.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (4)2.00 (2)2.831 (4)164 (5)
O2—H2···N10.85 (4)2.04 (2)2.811 (4)150 (4)

Experimental details

Crystal data
Chemical formulaC10H15NO
Mr165.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2679 (6), 8.1702 (7), 8.9426 (8)
α, β, γ (°)105.150 (1), 95.658 (1), 104.602 (1)
V3)488.25 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.42 × 0.22
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4074, 2078, 1457
Rint0.014
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.139, 1.07
No. of reflections2078
No. of parameters234
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (4)2.00 (2)2.831 (4)164 (5)
O2—H2···N10.85 (4)2.04 (2)2.811 (4)150 (4)
 

Acknowledgements

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023), the NSF of Hunan Province (No. 09 J J3028) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHooft, R. W. W., van der Sluis, P., Kanters, J. A. & Kroon, J. (1990). Acta Cryst. C46, 1133–1135.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationO'Brien Nabors, L. & Gelardi, R. C. (2001). Alternative Sweeteners, 3rd ed. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds