organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7α,15α-Di­bromo-8,16-di­phenyl-6,7,14,15-tetra­hydro-6α,14α-epi­thio­cyclo­octa­[1,2-b:5,6-b′]di­quinoline deutero­chloro­form solvate

aSchool of Chemistry, University of New South Wales, Sydney 2052, Australia, and bThe Analytical Centre, University of New South Wales, Sydney 2052, Australia
*Correspondence e-mail: m.scudder@unsw.edu.au

(Received 7 August 2009; accepted 19 August 2009; online 26 August 2009)

In the racemic title compound, C34H22Br2N2S·CDCl3, pairs of diquinoline host mol­ecules form centrosymmetric brick-like dimers utilizing three different aryl edge-to-face inter­actions (EF1–3). The dimeric (EF)6 (i.e. 2 × EF1–3) building blocks pack with the deuterochloro­form guest mol­ecules positioned near each of their corners. The Cl atoms of the latter are disordered over two sets of sites in a 0.53 (2):0.47 (2) ratio.

Related literature

The solvent-free C34H22Br2N2S mol­ecule crystallizes in space group C2/c exhibiting a layer structure that does not contain (EF)6 bricks (Alshahateet et al., 2008[Alshahateet, S. F., Bishop, R., Craig, D. C., Kooli, F. & Scudder, M. L. (2008). CrystEngComm, 10, 297-305.]). These bricks are, however, present in five alternative inclusion crystal structures formed by the same host (Alshahateet et al., 2008[Alshahateet, S. F., Bishop, R., Craig, D. C., Kooli, F. & Scudder, M. L. (2008). CrystEngComm, 10, 297-305.]). Similar dimeric (EF)6 building blocks have also been found in crystal structures of other structurally related racemic diquinoline mol­ecules (Ashmore et al., 2004[Ashmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). CrystEngComm, 6, 618-622.], 2009[Ashmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2009). Cryst. Growth Des. 9, 2742-2750.]).

[Scheme 1]

Experimental

Crystal data
  • C34H22Br2N2S·CDCl3

  • Mr = 770.81

  • Triclinic, [P \overline 1]

  • a = 10.161 (4) Å

  • b = 10.246 (5) Å

  • c = 15.868 (6) Å

  • α = 93.88 (3)°

  • β = 99.43 (3)°

  • γ = 92.50 (3)°

  • V = 1623.4 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 294 K

  • 0.26 × 0.24 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.489, Tmax = 0.712

  • 5894 measured reflections

  • 5692 independent reflections

  • 4210 reflections with I > 2σ(I)

  • Rint = 0.032

  • 1 standard reflections frequency: 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 0.84

  • 5692 reflections

  • 432 parameters

  • 436 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: CAD-4 Manual (Schagen et al., 1989[Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Manual; data reduction: CAD-4 Manual; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CrystalMaker (CrystalMaker, 2005[CrystalMaker (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. URL: www.CrystalMaker.co.uk.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of (I).CDCl3 is shown in Fig. 1. (I) is chiral, but in the racemic crystal, two molecules related by a centre of inversion form dimeric brick units, associating by means of pairs of three different edge-face interactions (EF1–3, Fig. 2). These (EF)6 brick units have previously been found to be present in five other crystal structures formed by the same diquinoline host (I) with other solvent inclusion (Alshahateet et al., 2008). In addition, similar dimeric (EF)6 building blocks have been found in crystal structures of other inclusion compounds of structurally related racemic diquinoline molecules (Ashmore et al., 2004 and 2009). However, when (I) was previously obtained from CHCl3 as solvent-free crystals in space group C2/c a layer structure resulted that did not contain (EF)6 bricks (Alshahateet et al., 2008). Formation of the solvent-free or lattice inclusion crystal forms is probably influenced by the crystallization temperature rather than by the isotopic substitution of the chloroform solvent.

The CDCl3 guest is disordered over two sites [occupancies 0.53 (2) and 0.47 (2)] and is located at the corners of the dimeric bricks. Additional lattice stabilization results from host-host and host–guest halogen···halogen and C—H(or D)···halogen interactions.

Related literature top

The solvent-free C34H22Br2N2S molecule crystallizes in space group C2/c exhibiting a layer structure that does not contain (EF)6 bricks (Alshahateet et al., 2008). These bricks are, however, present in five alternative inclusion crystal structures formed by the same host (Alshahateet et al., 2008). Similar dimeric (EF)6 building blocks have also been found in crystal structures of other structurally related racemic diquinoline molecules (Ashmore et al., 2004, 2009).

Experimental top

Racemic 7α,15α-dibromo-8,16-diphenyl-6,7,14,15-tetrahydro-6α,14α-thiacycloocta[1,2-b:5,6-b']diquinoline was prepared as previously described (Alshahateet et al., 2008) and colourless blocks of (I) were obtained by slow concentration of a deuterochloroform solution.

Computing details top

Data collection: CAD-4 Manual (Schagen et al., 1989); cell refinement: CAD-4 Manual (Schagen et al., 1989); data reduction: CAD-4 Manual (Schagen et al., 1989); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids drawn at 30% probability level. The second disorder component of the solvent has been omitted for clarity.
[Figure 2] Fig. 2. Unit cell diagram of (I) indicating the three different edge-face interactions, EF1–3.
7α,15α-Dibromo-8,16-diphenyl-6,7,14,15-tetrahydro-6α,14α- epithiocycloocta[1,2-b:5,6-b']diquinoline deuterochloroform solvate top
Crystal data top
C34H22Br2N2S·CDCl3Z = 2
Mr = 770.81F(000) = 768
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.161 (4) ÅCell parameters from 11 reflections
b = 10.246 (5) Åθ = 10.0–11.0°
c = 15.868 (6) ŵ = 2.84 mm1
α = 93.88 (3)°T = 294 K
β = 99.43 (3)°Blocks, colourless
γ = 92.50 (3)°0.26 × 0.24 × 0.12 mm
V = 1623.4 (12) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
4210 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 1211
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 1212
Tmin = 0.489, Tmax = 0.712l = 018
5894 measured reflections1 standard reflections every 30 min
5692 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.1P)2 + P]
where P = (Fo2 + 2Fc2)/3
5692 reflections(Δ/σ)max < 0.001
432 parametersΔρmax = 0.50 e Å3
436 restraintsΔρmin = 0.64 e Å3
Crystal data top
C34H22Br2N2S·CDCl3γ = 92.50 (3)°
Mr = 770.81V = 1623.4 (12) Å3
Triclinic, P1Z = 2
a = 10.161 (4) ÅMo Kα radiation
b = 10.246 (5) ŵ = 2.84 mm1
c = 15.868 (6) ÅT = 294 K
α = 93.88 (3)°0.26 × 0.24 × 0.12 mm
β = 99.43 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4210 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.032
Tmin = 0.489, Tmax = 0.7121 standard reflections every 30 min
5894 measured reflections intensity decay: none
5692 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045436 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.50 e Å3
5692 reflectionsΔρmin = 0.64 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The orientational disorder of CDCl3 (about the C1C'-H1C' bond) over two major sites (in 52:48 ratio) was modelled using PART instruction in SHELXL97. The molecular geometry of CDCl3 was restrained to have values within the observed range; anisotropic thermal parameters of the disordered atoms were also restrained using the same program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1C'0.0673 (7)0.8408 (6)0.8664 (4)0.114 (2)
D1C'0.09600.76800.90300.137*
Cl1C0.1613 (13)0.9741 (11)0.9107 (9)0.197 (5)0.53 (2)
Cl2C0.0864 (11)0.7870 (9)0.7614 (4)0.163 (4)0.53 (2)
Cl3C0.1006 (7)0.8557 (12)0.8705 (10)0.142 (3)0.53 (2)
Cl1'0.1385 (9)0.9940 (6)0.9039 (8)0.141 (3)0.47 (2)
Cl2'0.0872 (12)0.835 (2)0.7613 (5)0.208 (5)0.47 (2)
Cl3'0.0929 (12)0.8162 (17)0.8811 (15)0.198 (6)0.47 (2)
Br10.12588 (5)0.05682 (4)0.58378 (3)0.05792 (17)
Br20.22328 (4)0.53263 (4)0.90496 (3)0.04953 (15)
N10.1465 (3)0.5410 (3)0.6081 (2)0.0426 (8)
N20.4967 (3)0.2104 (3)0.7913 (2)0.0383 (7)
S10.11551 (10)0.26209 (10)0.76288 (7)0.0448 (3)
C10.1492 (4)0.4236 (4)0.7312 (2)0.0390 (9)
C20.1736 (4)0.4270 (4)0.6392 (2)0.0369 (8)
C30.2294 (4)0.3238 (4)0.5954 (2)0.0368 (8)
C40.2600 (4)0.1981 (4)0.6354 (2)0.0386 (8)
C50.2671 (4)0.2031 (4)0.7328 (3)0.0391 (8)
C60.3919 (4)0.2822 (4)0.7772 (2)0.0349 (8)
C70.3956 (4)0.4196 (3)0.7990 (2)0.0329 (8)
C80.2695 (4)0.4926 (4)0.7892 (2)0.0383 (9)
C90.1710 (4)0.5593 (4)0.5278 (3)0.0430 (9)
C100.1405 (5)0.6812 (4)0.4937 (3)0.0531 (11)
H100.10310.74660.52640.064*
C110.1644 (5)0.7041 (5)0.4151 (3)0.0625 (12)
H110.14330.78580.39290.075*
C120.2197 (5)0.6107 (5)0.3651 (3)0.0650 (13)
H120.23630.62940.30990.078*
C130.2499 (5)0.4924 (5)0.3959 (3)0.0571 (11)
H130.28620.42860.36140.069*
C140.2278 (4)0.4640 (4)0.4783 (3)0.0447 (9)
C150.2573 (4)0.3430 (4)0.5148 (3)0.0421 (9)
C160.6163 (4)0.2717 (4)0.8271 (2)0.0382 (8)
C170.7270 (4)0.1935 (4)0.8455 (3)0.0471 (10)
H170.71610.10110.83400.056*
C180.8490 (4)0.2505 (5)0.8796 (3)0.0555 (11)
H180.92240.19690.89310.067*
C190.8689 (4)0.3867 (5)0.8953 (3)0.0579 (12)
H190.95560.42530.91700.070*
C200.7626 (4)0.4635 (4)0.8792 (3)0.0492 (10)
H200.77640.55570.89050.059*
C210.6328 (4)0.4095 (4)0.8463 (2)0.0382 (8)
C220.5179 (4)0.4835 (4)0.8319 (2)0.0373 (8)
C230.3176 (5)0.2394 (4)0.4643 (3)0.0479 (10)
C240.4528 (5)0.2252 (5)0.4776 (3)0.0635 (13)
H240.51030.28310.51810.076*
C250.5059 (7)0.1250 (7)0.4310 (4)0.0881 (19)
H250.59930.11390.44110.106*
C260.4250 (8)0.0445 (6)0.3721 (4)0.0868 (18)
H260.46160.02280.34050.104*
C270.2903 (8)0.0594 (6)0.3575 (4)0.0859 (17)
H270.23390.00200.31590.103*
C280.2352 (6)0.1577 (5)0.4029 (3)0.0686 (14)
H280.14170.16870.39190.082*
C290.5295 (4)0.6274 (4)0.8582 (3)0.0404 (9)
C300.5095 (5)0.7195 (4)0.7992 (3)0.0535 (11)
H300.49020.69290.73980.064*
C310.5173 (6)0.8518 (5)0.8265 (4)0.0708 (14)
H310.50260.91530.78550.085*
C320.5463 (6)0.8915 (5)0.9125 (4)0.0700 (14)
H320.55130.98210.93060.084*
C330.5677 (5)0.8008 (5)0.9714 (3)0.0631 (13)
H330.58900.82781.03080.076*
C340.5582 (5)0.6691 (4)0.9444 (3)0.0498 (10)
H340.57160.60600.98580.060*
H10.080 (4)0.472 (4)0.739 (2)0.038 (11)*
H40.349 (4)0.158 (4)0.622 (2)0.039 (10)*
H50.273 (4)0.120 (4)0.751 (3)0.038 (10)*
H80.284 (4)0.577 (4)0.775 (2)0.036 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1C'0.137 (5)0.087 (4)0.128 (5)0.040 (4)0.037 (5)0.015 (4)
Cl1C0.137 (6)0.205 (9)0.220 (9)0.029 (6)0.043 (7)0.019 (6)
Cl2C0.225 (8)0.167 (5)0.118 (4)0.147 (6)0.045 (4)0.039 (3)
Cl3C0.106 (4)0.095 (6)0.236 (8)0.010 (3)0.065 (4)0.009 (5)
Cl1'0.118 (5)0.063 (3)0.256 (10)0.012 (3)0.068 (6)0.006 (4)
Cl2'0.159 (8)0.369 (16)0.091 (4)0.013 (9)0.004 (4)0.044 (6)
Cl3'0.179 (8)0.110 (9)0.323 (14)0.048 (6)0.106 (9)0.018 (8)
Br10.0681 (3)0.0409 (3)0.0561 (3)0.0073 (2)0.0066 (2)0.0104 (2)
Br20.0486 (3)0.0618 (3)0.0377 (2)0.0112 (2)0.00862 (18)0.00863 (19)
N10.0443 (19)0.0419 (19)0.0382 (18)0.0076 (15)0.0018 (15)0.0026 (14)
N20.0404 (17)0.0361 (17)0.0378 (17)0.0034 (14)0.0062 (14)0.0016 (14)
S10.0413 (6)0.0459 (6)0.0466 (6)0.0004 (4)0.0075 (4)0.0001 (5)
C10.039 (2)0.041 (2)0.036 (2)0.0077 (17)0.0047 (17)0.0043 (16)
C20.0314 (19)0.039 (2)0.038 (2)0.0019 (15)0.0013 (15)0.0015 (16)
C30.035 (2)0.036 (2)0.0352 (19)0.0008 (15)0.0010 (16)0.0053 (15)
C40.042 (2)0.034 (2)0.036 (2)0.0020 (16)0.0009 (16)0.0065 (16)
C50.040 (2)0.032 (2)0.044 (2)0.0012 (16)0.0022 (17)0.0042 (17)
C60.039 (2)0.037 (2)0.0287 (18)0.0028 (15)0.0078 (15)0.0004 (15)
C70.0392 (19)0.0315 (18)0.0279 (18)0.0037 (15)0.0062 (15)0.0027 (14)
C80.041 (2)0.041 (2)0.0328 (19)0.0089 (17)0.0073 (16)0.0042 (17)
C90.046 (2)0.038 (2)0.041 (2)0.0068 (17)0.0061 (17)0.0001 (16)
C100.062 (3)0.045 (2)0.051 (3)0.008 (2)0.002 (2)0.0029 (19)
C110.072 (3)0.054 (3)0.059 (3)0.005 (2)0.003 (2)0.016 (2)
C120.075 (3)0.073 (3)0.047 (3)0.002 (3)0.008 (2)0.017 (2)
C130.067 (3)0.060 (3)0.046 (2)0.012 (2)0.013 (2)0.006 (2)
C140.046 (2)0.049 (2)0.038 (2)0.0064 (18)0.0017 (18)0.0002 (17)
C150.039 (2)0.046 (2)0.038 (2)0.0046 (17)0.0002 (17)0.0051 (16)
C160.040 (2)0.042 (2)0.033 (2)0.0051 (16)0.0083 (16)0.0000 (16)
C170.046 (2)0.049 (2)0.048 (2)0.0093 (18)0.0102 (19)0.0002 (19)
C180.036 (2)0.072 (3)0.059 (3)0.013 (2)0.009 (2)0.000 (2)
C190.035 (2)0.075 (3)0.062 (3)0.001 (2)0.010 (2)0.009 (2)
C200.042 (2)0.052 (2)0.053 (3)0.0040 (18)0.0112 (19)0.007 (2)
C210.039 (2)0.045 (2)0.032 (2)0.0013 (16)0.0108 (16)0.0037 (16)
C220.045 (2)0.039 (2)0.0282 (18)0.0000 (16)0.0089 (16)0.0004 (15)
C230.061 (3)0.044 (2)0.040 (2)0.0096 (19)0.0114 (19)0.0020 (18)
C240.067 (3)0.070 (3)0.057 (3)0.021 (2)0.015 (2)0.005 (2)
C250.096 (4)0.112 (5)0.066 (4)0.060 (4)0.027 (3)0.008 (3)
C260.148 (5)0.069 (4)0.057 (3)0.051 (4)0.042 (4)0.008 (3)
C270.137 (5)0.063 (3)0.058 (3)0.009 (4)0.025 (3)0.018 (3)
C280.086 (4)0.068 (3)0.048 (3)0.009 (3)0.008 (2)0.020 (2)
C290.038 (2)0.038 (2)0.045 (2)0.0015 (16)0.0084 (17)0.0039 (17)
C300.070 (3)0.045 (2)0.046 (2)0.004 (2)0.015 (2)0.0007 (19)
C310.099 (4)0.043 (3)0.077 (3)0.004 (3)0.029 (3)0.016 (2)
C320.096 (4)0.038 (3)0.081 (3)0.004 (2)0.036 (3)0.010 (2)
C330.078 (3)0.051 (3)0.057 (3)0.008 (2)0.015 (3)0.018 (2)
C340.062 (3)0.043 (2)0.042 (2)0.000 (2)0.008 (2)0.0035 (18)
Geometric parameters (Å, º) top
C1C'—Cl1C1.676 (8)C13—H130.9500
C1C'—Cl2C1.765 (8)C14—C151.427 (6)
C1C'—Cl3C1.730 (9)C15—C231.500 (6)
C1C'—Cl1'1.724 (9)C16—C171.412 (6)
C1C'—Cl2'1.711 (10)C16—C211.421 (6)
C1C'—Cl3'1.692 (12)C17—C181.358 (6)
C1C'—D1C'1.0000C17—H170.9500
Br1—C41.981 (4)C18—C191.400 (7)
Br2—C81.990 (4)C18—H180.9500
N1—C21.322 (5)C19—C201.363 (6)
N1—C91.361 (5)C19—H190.9500
N2—C61.319 (5)C20—C211.411 (6)
N2—C161.361 (5)C20—H200.9500
S1—C11.796 (4)C21—C221.415 (5)
S1—C51.802 (4)C22—C291.499 (5)
C1—C81.519 (6)C23—C241.370 (7)
C1—C21.523 (5)C23—C281.382 (7)
C1—H10.89 (4)C24—C251.402 (7)
C2—C31.416 (5)C24—H240.9500
C3—C151.378 (6)C25—C261.348 (9)
C3—C41.497 (5)C25—H250.9500
C4—C51.532 (6)C26—C271.367 (9)
C4—H41.06 (4)C26—H260.9500
C5—C61.517 (5)C27—C281.390 (7)
C5—H50.92 (4)C27—H270.9500
C6—C71.425 (5)C28—H280.9500
C7—C221.385 (5)C29—C301.372 (6)
C7—C81.503 (5)C29—C341.386 (6)
C8—H80.92 (4)C30—C311.389 (6)
C9—C141.413 (6)C30—H300.9500
C9—C101.422 (6)C31—C321.377 (7)
C10—C111.343 (7)C31—H310.9500
C10—H100.9500C32—C331.362 (7)
C11—C121.396 (7)C32—H320.9500
C11—H110.9500C33—C341.382 (6)
C12—C131.365 (7)C33—H330.9500
C12—H120.9500C34—H340.9500
C13—C141.410 (6)
Cl1C—C1C'—Cl2C116.3 (8)C14—C13—H13119.6
Cl1C—C1C'—Cl3C112.5 (7)C13—C14—C9118.7 (4)
Cl3C—C1C'—Cl2C109.4 (7)C13—C14—C15123.9 (4)
Cl2'—C1C'—Cl1'101.7 (9)C9—C14—C15117.4 (4)
Cl3'—C1C'—Cl1'114.3 (7)C3—C15—C14119.4 (4)
Cl3'—C1C'—Cl2'114.2 (10)C3—C15—C23121.6 (4)
Cl1C—C1C'—D1C'106.0C14—C15—C23119.0 (4)
Cl2C—C1C'—D1C'106.0N2—C16—C17117.8 (4)
Cl3C—C1C'—D1C'106.0N2—C16—C21122.5 (3)
Cl1'—C1C'—D1C'115.4C17—C16—C21119.7 (4)
Cl2'—C1C'—D1C'120.7C18—C17—C16119.9 (4)
Cl3'—C1C'—D1C'91.2C18—C17—H17120.0
C2—N1—C9117.7 (3)C16—C17—H17120.0
C6—N2—C16118.1 (3)C17—C18—C19121.4 (4)
C1—S1—C592.66 (19)C17—C18—H18119.3
C8—C1—C2107.7 (3)C19—C18—H18119.3
C8—C1—S1111.4 (3)C20—C19—C18119.4 (4)
C2—C1—S1114.3 (3)C20—C19—H19120.3
C8—C1—H1105 (3)C18—C19—H19120.3
C2—C1—H1109 (3)C19—C20—C21121.8 (4)
S1—C1—H1109 (3)C19—C20—H20119.1
N1—C2—C3124.4 (4)C21—C20—H20119.1
N1—C2—C1111.9 (3)C20—C21—C22124.3 (4)
C3—C2—C1123.5 (3)C20—C21—C16117.7 (4)
C15—C3—C2118.1 (4)C22—C21—C16117.9 (3)
C15—C3—C4120.6 (3)C7—C22—C21119.1 (3)
C2—C3—C4121.4 (3)C7—C22—C29121.4 (3)
C3—C4—C5115.5 (3)C21—C22—C29119.4 (3)
C3—C4—Br1110.4 (3)C24—C23—C28119.7 (4)
C5—C4—Br1107.7 (3)C24—C23—C15121.1 (4)
C3—C4—H4114 (2)C28—C23—C15119.2 (4)
C5—C4—H4107 (2)C23—C24—C25119.7 (5)
Br1—C4—H4101 (2)C23—C24—H24120.1
C6—C5—C4110.1 (3)C25—C24—H24120.1
C6—C5—S1113.3 (3)C26—C25—C24120.3 (6)
C4—C5—S1110.8 (3)C26—C25—H25119.8
C6—C5—H5107 (2)C24—C25—H25119.8
C4—C5—H5110 (2)C25—C26—C27120.2 (5)
S1—C5—H5106 (2)C25—C26—H26119.9
N2—C6—C7123.9 (3)C27—C26—H26119.9
N2—C6—C5112.6 (3)C26—C27—C28120.6 (6)
C7—C6—C5123.4 (3)C26—C27—H27119.7
C22—C7—C6118.2 (3)C28—C27—H27119.7
C22—C7—C8120.9 (3)C23—C28—C27119.3 (6)
C6—C7—C8120.9 (3)C23—C28—H28120.3
C7—C8—C1115.8 (3)C27—C28—H28120.3
C7—C8—Br2108.5 (3)C30—C29—C34118.7 (4)
C1—C8—Br2109.1 (3)C30—C29—C22121.9 (4)
C7—C8—H8112 (2)C34—C29—C22119.4 (4)
C1—C8—H8112 (2)C29—C30—C31120.0 (4)
Br2—C8—H899 (2)C29—C30—H30120.0
N1—C9—C14123.0 (4)C31—C30—H30120.0
N1—C9—C10118.0 (4)C32—C31—C30120.5 (5)
C14—C9—C10119.0 (4)C32—C31—H31119.7
C11—C10—C9120.0 (4)C30—C31—H31119.7
C11—C10—H10120.0C33—C32—C31120.0 (4)
C9—C10—H10120.0C33—C32—H32120.0
C10—C11—C12121.7 (5)C31—C32—H32120.0
C10—C11—H11119.2C32—C33—C34119.6 (5)
C12—C11—H11119.2C32—C33—H33120.2
C13—C12—C11119.8 (5)C34—C33—H33120.2
C13—C12—H12120.1C33—C34—C29121.3 (4)
C11—C12—H12120.1C33—C34—H34119.4
C12—C13—C14120.7 (5)C29—C34—H34119.4
C12—C13—H13119.6

Experimental details

Crystal data
Chemical formulaC34H22Br2N2S·CDCl3
Mr770.81
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.161 (4), 10.246 (5), 15.868 (6)
α, β, γ (°)93.88 (3), 99.43 (3), 92.50 (3)
V3)1623.4 (12)
Z2
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.26 × 0.24 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.489, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
5894, 5692, 4210
Rint0.032
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 0.84
No. of reflections5692
No. of parameters432
No. of restraints436
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.64

Computer programs: CAD-4 Manual (Schagen et al., 1989), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2005).

 

Acknowledgements

This research was supported by the Australian Research Council.

References

First citationAlshahateet, S. F., Bishop, R., Craig, D. C., Kooli, F. & Scudder, M. L. (2008). CrystEngComm, 10, 297–305.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAshmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). CrystEngComm, 6, 618–622.  Web of Science CSD CrossRef CAS Google Scholar
First citationAshmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2009). Cryst. Growth Des. 9, 2742–2750.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystalMaker (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. URL: www.CrystalMaker.co.uk.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds