organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Disulfanyl-6-[(E)-(2-sulfanylbenz­yl)imino­meth­yl]phenol

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 12 August 2009; accepted 13 August 2009; online 19 August 2009)

In the title compound, C14H13NOS3, the dihedral angle between the benzene rings is 73.26 (5)° and an intra­molecular O—H⋯N hydrogen bond occurs.

Related literature

For background, see: Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]);

[Scheme 1]

Experimental

Crystal data
  • C14H13NOS3

  • Mr = 307.43

  • Monoclinic, P 21 /c

  • a = 11.9763 (13) Å

  • b = 8.2333 (13) Å

  • c = 14.2213 (13) Å

  • β = 98.723 (3)°

  • V = 1386.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.867, Tmax = 0.880

  • 7137 measured reflections

  • 2443 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.06

  • 2443 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.591 (3) 147

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in Schiff base compounds due to their biological activities (Shi et al., 2007). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). There ais an intramolecular O—H···N hydrogen bond (Table 1) in (I). The dihedral angle between the two benzene rings is 73.26 (0.05) °.

Related literature top

For background, see: Shi et al. (2007). For reference structural data, see: Allen et al. (1987);

Experimental top

A mixture of 2-hydroxy-3,5-disulfanylbenzaldehyde (186 mg, 1 mmol) and 2-(aminomethyl)benzenethiol (139 mg, 1 mmol) in methanol (10 ml) was stirred for 2 h. After keeping the filtrate in air for 6 d, yellow blocks of (I) were formed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å, S—H = 1.20Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
2,4-Disulfanyl-6-[(E)-(2-sulfanylbenzyl)iminomethyl]phenol top
Crystal data top
C14H13NOS3F(000) = 640
Mr = 307.43Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.9763 (13) Åθ = 9–12°
b = 8.2333 (13) ŵ = 0.52 mm1
c = 14.2213 (13) ÅT = 296 K
β = 98.723 (3)°Block, yellow
V = 1386.1 (3) Å30.28 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2443 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω/2θ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: ψ scan
(North et al., 1968)
h = 1410
Tmin = 0.867, Tmax = 0.880k = 99
7137 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.5508P]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max = 0.002
176 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H13NOS3V = 1386.1 (3) Å3
Mr = 307.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9763 (13) ŵ = 0.52 mm1
b = 8.2333 (13) ÅT = 296 K
c = 14.2213 (13) Å0.28 × 0.25 × 0.25 mm
β = 98.723 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2443 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1929 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.880Rint = 0.025
7137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2443 reflectionsΔρmin = 0.39 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3001 (2)0.0386 (3)0.0207 (2)0.0502 (6)
H20.24150.03100.01180.060*
C30.3723 (2)0.0988 (3)0.05602 (18)0.0468 (6)
C40.46151 (19)0.2023 (3)0.04542 (18)0.0441 (6)
C50.4777 (2)0.2435 (3)0.04744 (18)0.0448 (6)
C60.4044 (2)0.1839 (3)0.1250 (2)0.0532 (7)
H60.41480.21180.18640.064*
C70.3166 (2)0.0837 (3)0.1110 (2)0.0538 (7)
C80.9011 (2)0.3750 (3)0.1048 (2)0.0551 (7)
C90.8496 (2)0.3907 (3)0.0113 (2)0.0478 (6)
C100.7427 (2)0.4868 (3)0.0169 (3)0.0605 (8)
H10A0.74760.58900.01740.073*
H10B0.73330.51060.08440.073*
C110.8989 (2)0.3091 (3)0.0574 (2)0.0594 (7)
H110.86600.31510.12090.071*
C120.9966 (3)0.2189 (4)0.0324 (3)0.0718 (9)
H121.02970.16680.07920.086*
C131.0442 (3)0.2064 (4)0.0608 (3)0.0726 (9)
H131.10920.14450.07720.087*
C140.9971 (3)0.2840 (4)0.1300 (2)0.0690 (8)
H141.02970.27530.19340.083*
C150.5736 (2)0.3436 (3)0.0638 (2)0.0523 (7)
H150.58210.37100.12570.063*
N10.64557 (17)0.3939 (3)0.00480 (18)0.0541 (6)
O10.52860 (16)0.2588 (2)0.12252 (13)0.0597 (5)
H10.58200.30780.10600.090*
S10.35256 (7)0.04078 (11)0.16895 (5)0.0677 (3)
H1A0.44080.00370.21280.102*
S20.22437 (8)0.01029 (13)0.20692 (7)0.0860 (4)
H2A0.27340.08230.25150.129*
S30.84366 (10)0.47293 (14)0.19417 (7)0.0939 (4)
H3A0.80050.59770.16400.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0407 (14)0.0441 (14)0.0657 (18)0.0040 (11)0.0080 (12)0.0050 (12)
C30.0450 (14)0.0445 (14)0.0537 (15)0.0098 (11)0.0161 (11)0.0037 (11)
C40.0379 (13)0.0410 (13)0.0531 (15)0.0074 (10)0.0060 (11)0.0070 (11)
C50.0394 (13)0.0392 (13)0.0555 (15)0.0099 (10)0.0059 (11)0.0044 (11)
C60.0543 (16)0.0523 (15)0.0514 (15)0.0073 (12)0.0029 (12)0.0093 (12)
C70.0475 (15)0.0527 (15)0.0575 (17)0.0041 (12)0.0037 (12)0.0010 (13)
C80.0483 (15)0.0544 (16)0.0643 (18)0.0054 (13)0.0144 (13)0.0064 (13)
C90.0399 (13)0.0369 (13)0.0683 (17)0.0032 (10)0.0136 (12)0.0039 (11)
C100.0440 (15)0.0444 (15)0.095 (2)0.0030 (11)0.0151 (14)0.0117 (14)
C110.0616 (17)0.0542 (16)0.0662 (18)0.0002 (13)0.0223 (14)0.0053 (13)
C120.072 (2)0.0588 (18)0.094 (2)0.0109 (15)0.0409 (19)0.0026 (17)
C130.0478 (17)0.067 (2)0.105 (3)0.0124 (15)0.0171 (17)0.0114 (19)
C140.0527 (17)0.076 (2)0.075 (2)0.0016 (15)0.0010 (15)0.0072 (17)
C150.0477 (15)0.0453 (14)0.0651 (17)0.0099 (12)0.0121 (13)0.0103 (12)
N10.0395 (12)0.0460 (12)0.0771 (16)0.0029 (9)0.0100 (11)0.0029 (11)
O10.0542 (11)0.0678 (13)0.0566 (11)0.0068 (9)0.0063 (9)0.0133 (9)
S10.0733 (5)0.0826 (6)0.0530 (5)0.0086 (4)0.0280 (4)0.0057 (4)
S20.0784 (6)0.1025 (7)0.0678 (6)0.0198 (5)0.0192 (4)0.0078 (5)
S30.1002 (8)0.1088 (8)0.0779 (6)0.0057 (6)0.0300 (5)0.0335 (5)
Geometric parameters (Å, º) top
C2—C31.377 (4)C10—N11.464 (3)
C2—C71.380 (4)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.392 (4)C11—C121.386 (4)
C3—S11.726 (3)C11—H110.9300
C4—O11.341 (3)C12—C131.364 (5)
C4—C51.405 (4)C12—H120.9300
C5—C61.391 (4)C13—C141.365 (5)
C5—C151.461 (4)C13—H130.9300
C6—C71.374 (4)C14—H140.9300
C6—H60.9300C15—N11.269 (3)
C7—S21.729 (3)C15—H150.9300
C8—C141.374 (4)O1—H10.8200
C8—C91.384 (4)S1—H1A1.2000
C8—S31.733 (3)S2—H2A1.2000
C9—C111.390 (4)S3—H3A1.2000
C9—C101.507 (4)
C3—C2—C7118.7 (2)N1—C10—H10A109.7
C3—C2—H2120.7C9—C10—H10A109.7
C7—C2—H2120.7N1—C10—H10B109.7
C2—C3—C4122.3 (2)C9—C10—H10B109.7
C2—C3—S1118.6 (2)H10A—C10—H10B108.2
C4—C3—S1119.1 (2)C12—C11—C9120.7 (3)
O1—C4—C3119.9 (2)C12—C11—H11119.7
O1—C4—C5122.3 (2)C9—C11—H11119.7
C3—C4—C5117.9 (2)C13—C12—C11120.1 (3)
C6—C5—C4119.9 (2)C13—C12—H12119.9
C6—C5—C15119.4 (2)C11—C12—H12119.9
C4—C5—C15120.7 (2)C12—C13—C14120.5 (3)
C7—C6—C5120.2 (3)C12—C13—H13119.7
C7—C6—H6119.9C14—C13—H13119.7
C5—C6—H6119.9C13—C14—C8119.3 (3)
C6—C7—C2121.1 (2)C13—C14—H14120.4
C6—C7—S2120.5 (2)C8—C14—H14120.4
C2—C7—S2118.4 (2)N1—C15—C5121.4 (3)
C14—C8—C9122.3 (3)N1—C15—H15119.3
C14—C8—S3118.2 (2)C5—C15—H15119.3
C9—C8—S3119.5 (2)C15—N1—C10118.5 (3)
C8—C9—C11117.1 (2)C4—O1—H1109.5
C8—C9—C10122.8 (3)C3—S1—H1A109.5
C11—C9—C10120.0 (3)C7—S2—H2A109.5
N1—C10—C9109.9 (2)C8—S3—H3A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.591 (3)147

Experimental details

Crystal data
Chemical formulaC14H13NOS3
Mr307.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9763 (13), 8.2333 (13), 14.2213 (13)
β (°) 98.723 (3)
V3)1386.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.28 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.867, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
7137, 2443, 1929
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 1.06
No. of reflections2443
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.39

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.591 (3)147
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds