organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Hydr­­oxy-3,5-di­iodo­benzyl­­idene)-2-nitro­benzohydrazide methanol solvate

aKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bDepartment of Chemistry, Dalian Teacher College, Dalian 116000, People's Republic of China
*Correspondence e-mail: hengyu_qian@126.com

(Received 19 August 2009; accepted 19 August 2009; online 26 August 2009)

In the title compound, C14H9I2N3O4·CH3OH, the Schiff base mol­ecule adopts an E geometry with respect to the C=N bond and the dihedral angle between the benzene rings is 45.0 (2)°; an intra­molecular O—H⋯N hydrogen bond is present. In the crystal, adjacent Schiff base mol­ecules are linked by methanol solvent mol­ecules through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming dimers.

Related literature

For a related structure and background, see: Qian & Qu (2009[Qian, H.-Y. & Qu, D.-P. (2009). Acta Cryst. E65, o2237.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9I2N3O4·CH4O

  • Mr = 569.08

  • Monoclinic, C 2/c

  • a = 19.5041 (12) Å

  • b = 10.2306 (7) Å

  • c = 19.9474 (14) Å

  • β = 111.764 (4)°

  • V = 3696.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.547, Tmax = 0.577

  • 11057 measured reflections

  • 4015 independent reflections

  • 3394 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.11

  • 4015 reflections

  • 232 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.599 (3) 146
O5—H5⋯O2i 0.82 1.91 2.711 (4) 164
N2—H2⋯O5ii 0.891 (10) 1.985 (12) 2.870 (3) 172 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of Schiff bases (Qian & Qu, 2009), we now report the synthsis and structure of the title compound, (I), (Fig. 1).

The Schiff base molecule adopts an E geometry with respect to the C=N bond, and there forms an intramolecular O—H···N hydrogen bond. The two benzene rings forms a dihedral angle of 45.0 (2)°. The dihedral angle between the O3/N3/O4 plane and the C9—C14 benzene ring is 39.2 (2)°. In the crystal structure, the adjacent two Schiff base molecules are linked by a methanol molecule through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

Related literature top

For a related structure and background, see: Qian & Qu (2009).

Experimental top

2-Nitrobenzohydrazide (1 mmol, 0.181 g) and 3,5-diiodosalicylaldehyde (1 mmol, 0.374 g) were dissolved in anhydrous methanol (15 ml). The mixture was stirred for several minutes at room temperature. The product was isolated and recrystallized from methanol, colorless blocks of (I) were obtained after 3 days.

Refinement top

The imino H atom was located in a difference map and its positional parameters were refined with a fixed isotropic thermal parameter of 0.08 Å2. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), O—H = 0.82 å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15 and O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonding is shown by dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Hydrogen bonding is shown in dashed lines.
(E)-N'-(2-Hydroxy-3,5-diiodobenzylidene)-2-nitrobenzohydrazide methanol solvate top
Crystal data top
C14H9I2N3O4·CH4OF(000) = 2160
Mr = 569.08Dx = 2.045 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5751 reflections
a = 19.5041 (12) Åθ = 2.5–30.0°
b = 10.2306 (7) ŵ = 3.43 mm1
c = 19.9474 (14) ÅT = 298 K
β = 111.764 (4)°Block, colorless
V = 3696.6 (4) Å30.20 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4015 independent reflections
Radiation source: fine-focus sealed tube3394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2422
Tmin = 0.547, Tmax = 0.577k = 1310
11057 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.9087P]
where P = (Fo2 + 2Fc2)/3
4015 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 1.02 e Å3
Crystal data top
C14H9I2N3O4·CH4OV = 3696.6 (4) Å3
Mr = 569.08Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.5041 (12) ŵ = 3.43 mm1
b = 10.2306 (7) ÅT = 298 K
c = 19.9474 (14) Å0.20 × 0.20 × 0.18 mm
β = 111.764 (4)°
Data collection top
Bruker SMART CCD
diffractometer
4015 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3394 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.577Rint = 0.027
11057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.44 e Å3
4015 reflectionsΔρmin = 1.02 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.143857 (13)0.30042 (2)0.138167 (11)0.05559 (9)
I20.067514 (12)0.86426 (2)0.123056 (11)0.05414 (9)
N10.25171 (13)0.6839 (2)0.15211 (12)0.0419 (6)
N20.29927 (14)0.6742 (2)0.22329 (12)0.0418 (6)
N30.42504 (16)0.9532 (3)0.35060 (14)0.0540 (7)
O10.16625 (13)0.8109 (2)0.03922 (11)0.0512 (6)
H10.19610.80280.08070.077*
O20.27120 (13)0.8790 (2)0.24931 (11)0.0546 (6)
O30.42749 (16)0.9390 (3)0.29089 (12)0.0736 (8)
O40.4402 (2)1.0549 (3)0.38515 (16)0.0940 (10)
O50.63153 (13)0.4225 (2)0.24221 (12)0.0578 (6)
H50.67000.40740.23600.087*
C10.19975 (15)0.5847 (3)0.03648 (14)0.0380 (6)
C20.16300 (16)0.6994 (3)0.00277 (14)0.0369 (6)
C30.12219 (15)0.6956 (3)0.07147 (14)0.0385 (6)
C40.11739 (16)0.5834 (3)0.11097 (14)0.0413 (7)
H40.09000.58290.16030.050*
C50.15337 (16)0.4712 (3)0.07701 (15)0.0425 (7)
C60.19422 (16)0.4716 (3)0.00401 (14)0.0417 (7)
H60.21830.39590.01840.050*
C70.24533 (16)0.5819 (3)0.11310 (14)0.0415 (7)
H70.27000.50560.13380.050*
C80.30522 (15)0.7759 (3)0.26755 (14)0.0385 (6)
C90.35442 (16)0.7502 (3)0.34453 (14)0.0377 (6)
C100.40679 (17)0.8399 (3)0.38486 (15)0.0410 (6)
C110.4469 (2)0.8220 (3)0.45769 (16)0.0533 (8)
H110.48140.88380.48390.064*
C120.4346 (2)0.7113 (4)0.49031 (17)0.0621 (10)
H120.46140.69740.53910.075*
C130.3837 (2)0.6215 (4)0.45209 (17)0.0640 (10)
H130.37600.54690.47500.077*
C140.34329 (19)0.6404 (3)0.37922 (16)0.0491 (8)
H140.30850.57860.35360.059*
C150.5718 (2)0.3661 (4)0.1857 (2)0.0800 (13)
H15A0.52700.38060.19400.120*
H15B0.58000.27390.18380.120*
H15C0.56780.40540.14070.120*
H20.324 (2)0.600 (2)0.237 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.06140 (16)0.04922 (14)0.04793 (13)0.00025 (10)0.01070 (11)0.01635 (9)
I20.05556 (15)0.05314 (15)0.04538 (13)0.01490 (9)0.00901 (10)0.01138 (9)
N10.0382 (13)0.0469 (14)0.0291 (11)0.0020 (10)0.0010 (10)0.0033 (10)
N20.0445 (14)0.0384 (13)0.0290 (11)0.0081 (11)0.0021 (10)0.0019 (10)
N30.0567 (17)0.0532 (17)0.0405 (14)0.0102 (13)0.0046 (12)0.0001 (12)
O10.0615 (15)0.0400 (12)0.0383 (11)0.0108 (10)0.0024 (10)0.0057 (9)
O20.0569 (14)0.0436 (13)0.0481 (12)0.0149 (10)0.0019 (10)0.0024 (10)
O30.089 (2)0.0819 (19)0.0490 (14)0.0147 (15)0.0246 (14)0.0089 (13)
O40.139 (3)0.0533 (17)0.0708 (17)0.0332 (17)0.0174 (18)0.0079 (14)
O50.0566 (14)0.0457 (13)0.0594 (13)0.0042 (11)0.0080 (11)0.0033 (11)
C10.0361 (15)0.0392 (15)0.0316 (13)0.0014 (12)0.0042 (11)0.0010 (11)
C20.0370 (15)0.0358 (15)0.0341 (13)0.0011 (11)0.0087 (12)0.0009 (11)
C30.0348 (15)0.0436 (16)0.0343 (13)0.0068 (12)0.0095 (12)0.0049 (11)
C40.0363 (15)0.0511 (18)0.0315 (13)0.0004 (12)0.0068 (11)0.0037 (12)
C50.0426 (16)0.0430 (16)0.0368 (14)0.0011 (13)0.0088 (12)0.0069 (12)
C60.0419 (16)0.0368 (15)0.0379 (14)0.0019 (12)0.0051 (12)0.0026 (12)
C70.0436 (16)0.0370 (15)0.0339 (14)0.0039 (12)0.0029 (12)0.0002 (12)
C80.0338 (14)0.0400 (16)0.0343 (13)0.0025 (12)0.0041 (11)0.0033 (11)
C90.0405 (15)0.0387 (15)0.0316 (13)0.0051 (12)0.0107 (11)0.0038 (12)
C100.0454 (17)0.0392 (16)0.0336 (13)0.0016 (12)0.0090 (12)0.0024 (12)
C110.061 (2)0.0546 (19)0.0320 (14)0.0020 (16)0.0024 (14)0.0109 (14)
C120.082 (3)0.066 (2)0.0297 (15)0.0082 (19)0.0103 (16)0.0026 (15)
C130.090 (3)0.057 (2)0.0406 (17)0.0001 (19)0.0190 (18)0.0088 (15)
C140.059 (2)0.0411 (17)0.0441 (16)0.0029 (14)0.0157 (15)0.0033 (13)
C150.074 (3)0.058 (2)0.074 (3)0.0091 (19)0.012 (2)0.0031 (19)
Geometric parameters (Å, º) top
I1—C52.099 (3)C4—C51.384 (4)
I2—C32.088 (3)C4—H40.9300
N1—C71.280 (4)C5—C61.377 (4)
N1—N21.382 (3)C6—H60.9300
N2—C81.341 (4)C7—H70.9300
N2—H20.891 (10)C8—C91.502 (4)
N3—O31.218 (3)C9—C141.378 (4)
N3—O41.222 (4)C9—C101.386 (4)
N3—C101.456 (4)C10—C111.383 (4)
O1—C21.341 (3)C11—C121.371 (5)
O1—H10.8200C11—H110.9300
O2—C81.227 (3)C12—C131.360 (5)
O5—C151.410 (4)C12—H120.9300
O5—H50.8200C13—C141.386 (4)
C1—C61.392 (4)C13—H130.9300
C1—C21.409 (4)C14—H140.9300
C1—C71.456 (4)C15—H15A0.9600
C2—C31.398 (4)C15—H15B0.9600
C3—C41.376 (4)C15—H15C0.9600
C7—N1—N2116.3 (2)C1—C7—H7119.8
C8—N2—N1118.8 (2)O2—C8—N2124.5 (3)
C8—N2—H2124 (3)O2—C8—C9121.6 (3)
N1—N2—H2117 (3)N2—C8—C9113.8 (2)
O3—N3—O4124.4 (3)C14—C9—C10117.8 (3)
O3—N3—C10117.9 (3)C14—C9—C8119.7 (3)
O4—N3—C10117.6 (3)C10—C9—C8122.1 (3)
C2—O1—H1109.5C11—C10—C9122.0 (3)
C15—O5—H5109.5C11—C10—N3117.2 (3)
C6—C1—C2119.9 (2)C9—C10—N3120.7 (2)
C6—C1—C7118.6 (3)C12—C11—C10118.5 (3)
C2—C1—C7121.5 (3)C12—C11—H11120.8
O1—C2—C3119.5 (2)C10—C11—H11120.8
O1—C2—C1122.4 (2)C13—C12—C11120.8 (3)
C3—C2—C1118.1 (3)C13—C12—H12119.6
C4—C3—C2121.4 (3)C11—C12—H12119.6
C4—C3—I2119.6 (2)C12—C13—C14120.4 (3)
C2—C3—I2119.0 (2)C12—C13—H13119.8
C3—C4—C5119.8 (2)C14—C13—H13119.8
C3—C4—H4120.1C9—C14—C13120.4 (3)
C5—C4—H4120.1C9—C14—H14119.8
C6—C5—C4120.3 (3)C13—C14—H14119.8
C6—C5—I1120.6 (2)O5—C15—H15A109.5
C4—C5—I1119.09 (19)O5—C15—H15B109.5
C5—C6—C1120.4 (3)H15A—C15—H15B109.5
C5—C6—H6119.8O5—C15—H15C109.5
C1—C6—H6119.8H15A—C15—H15C109.5
N1—C7—C1120.4 (3)H15B—C15—H15C109.5
N1—C7—H7119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.821.912.711 (4)164
O1—H1···N10.821.882.599 (3)146
N2—H2···O5ii0.89 (1)1.99 (1)2.870 (3)172 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9I2N3O4·CH4O
Mr569.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.5041 (12), 10.2306 (7), 19.9474 (14)
β (°) 111.764 (4)
V3)3696.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.547, 0.577
No. of measured, independent and
observed [I > 2σ(I)] reflections
11057, 4015, 3394
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.11
No. of reflections4015
No. of parameters232
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 1.02

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.821.912.711 (4)164
O1—H1···N10.821.882.599 (3)146
N2—H2···O5ii0.891 (10)1.985 (12)2.870 (3)172 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1/2.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQian, H.-Y. & Qu, D.-P. (2009). Acta Cryst. E65, o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds