organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[2-(6-chloro­pyrimidin-4-yl­­oxy)phen­yl]-3,3-di­meth­oxy­propanoate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 30 July 2009; accepted 3 August 2009; online 8 August 2009)

In the title compound, C16H17ClN2O5, the dihedral angle between the aromatic rings is 77.36 (4)°. An intra­molecular C—H⋯O inter­action results in the formation of a planar [r.m.s. deviation = 0.103 (2) Å] five-membered ring, which is oriented at a dihedral angle of 4.84 (4)° with respect to the adjacent benzene ring. In the crystal structure, weak intermolecular C—H⋯π inter­actions are found.

Related literature

For a related structure, see: Bowden & Brown (1996[Bowden, M. C. & Brown, S. M. (1996). UK Patent Appl. GB2291874.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClN2O5

  • Mr = 352.77

  • Triclinic, [P \overline 1]

  • a = 9.5030 (19) Å

  • b = 10.051 (2) Å

  • c = 11.162 (2) Å

  • α = 101.24 (3)°

  • β = 108.47 (3)°

  • γ = 113.42 (3)°

  • V = 862.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.952, Tmax = 0.988

  • 3346 measured reflections

  • 3140 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.173

  • S = 1.07

  • 3140 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O5 0.98 2.25 2.777 (6) 113
C1—H1BCg2i 0.96 2.97 3.696 (5) 134
C16—H16ACg1i 0.93 2.85 3.661 (4) 146
Symmetry code: (i) -x+1, -y+1, -z. Cg1 and Cg2 are centroids of the C7–C12 and N1/N2/C13–C16 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound can be used as an intermediate in the preparation of azoxystrobin, which is an important fungicide (Bowden & Brown, 1996). We report herein the crystal structure of the title compound, which is of interest to us in the field.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C7-C12) and B (N1/N2/C13-C16) are, of course, planar and the dihedral angle between them is A/B = 77.36 (4)°. Intramolecular C-H···O interaction (Table 1) results in the formation of a planar five-membered ring C (O5/C6-C8/H6A), which is oriented with respect to the adjacent ring A at a dihedral angle of A/C = 4.84 (4)°.

In the crystal structure, weak C—H···π interactions (Table 1) are found.

Related literature top

For a related structure, see: Bowden & Brown (1996). For bond-length data, see: Allen et al. (1987). Cg1 and Cg2 are centroids of the C7–C12 and N1/N2/C13–C16 rings, respectively.

Experimental top

The title compound was prepared acording to a literature method (Bowden & Brown, 1996). Crystals suitable for X-ray analysis were obtained by dissolving the title compound in methanol and evaporating the solvent slowly at room temperature for 8 d.

Refinement top

H atoms were positioned geometrically with C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Methyl 2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3,3-dimethoxypropanoate top
Crystal data top
C16H17ClN2O5Z = 2
Mr = 352.77F(000) = 368
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5030 (19) ÅCell parameters from 25 reflections
b = 10.051 (2) Åθ = 9–12°
c = 11.162 (2) ŵ = 0.25 mm1
α = 101.24 (3)°T = 294 K
β = 108.47 (3)°Needle, colorless
γ = 113.42 (3)°0.20 × 0.20 × 0.05 mm
V = 862.6 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1427 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1211
Tmin = 0.952, Tmax = 0.988l = 1312
3346 measured reflections3 standard reflections every 120 min
3140 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3140 reflectionsΔρmax = 0.43 e Å3
211 parametersΔρmin = 0.45 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H17ClN2O5γ = 113.42 (3)°
Mr = 352.77V = 862.6 (5) Å3
Triclinic, P1Z = 2
a = 9.5030 (19) ÅMo Kα radiation
b = 10.051 (2) ŵ = 0.25 mm1
c = 11.162 (2) ÅT = 294 K
α = 101.24 (3)°0.20 × 0.20 × 0.05 mm
β = 108.47 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1427 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.952, Tmax = 0.9883 standard reflections every 120 min
3346 measured reflections intensity decay: 1%
3140 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.078211 parameters
wR(F2) = 0.173H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
3140 reflectionsΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.16863 (16)0.54848 (17)0.23573 (15)0.0918 (5)
O10.7131 (4)0.4178 (4)0.3468 (3)0.0806 (10)
O20.6406 (5)0.2829 (5)0.4869 (4)0.1119 (14)
O30.5192 (5)0.0798 (5)0.3027 (4)0.1150 (14)
O40.7857 (7)0.0410 (6)0.4408 (5)0.1371 (18)
O50.4458 (3)0.3794 (3)0.0203 (3)0.0658 (9)
N10.3799 (5)0.1982 (4)0.0434 (4)0.0631 (11)
N20.0880 (5)0.2702 (5)0.1614 (4)0.0727 (11)
C10.8435 (9)0.4438 (9)0.4217 (6)0.131 (3)
H1B0.82310.54460.37300.196*
H1C0.95170.36480.43450.196*
H1D0.84430.43980.50860.196*
C20.6907 (10)0.2967 (8)0.6060 (6)0.140 (3)
H2B0.61240.29720.64320.210*
H2C0.69380.39250.59500.210*
H2D0.80260.21050.66640.210*
C30.7194 (7)0.2788 (5)0.4025 (5)0.0710 (14)
H3A0.84000.20040.45780.085*
C40.5126 (8)0.0639 (7)0.3384 (6)0.1142 (16)
H4A0.39830.04320.28960.171*
H4B0.54690.10440.43430.171*
H4C0.58830.13890.31480.171*
C50.6598 (11)0.0736 (9)0.3573 (8)0.1142 (16)
C60.6513 (6)0.2253 (6)0.2981 (5)0.0688 (13)
H6A0.52980.30250.24600.083*
C70.7250 (6)0.2132 (5)0.1948 (5)0.0517 (11)
C80.6183 (5)0.2823 (4)0.0593 (5)0.0464 (10)
C90.6753 (6)0.2753 (5)0.0390 (5)0.0609 (13)
H9A0.59860.32590.13050.073*
C100.8481 (7)0.1921 (6)0.0000 (6)0.0699 (14)
H10A0.88840.18500.06560.084*
C110.9602 (6)0.1202 (6)0.1340 (7)0.0793 (16)
H11A1.07700.06440.16070.095*
C120.8968 (6)0.1316 (5)0.2302 (5)0.0691 (14)
H12A0.97320.08230.32180.083*
C130.3283 (6)0.3428 (5)0.0417 (4)0.0536 (11)
C140.2533 (6)0.1731 (5)0.1042 (5)0.0720 (14)
H14A0.28580.07370.10680.086*
C150.0453 (6)0.4133 (5)0.1578 (4)0.0586 (12)
C160.1620 (5)0.4550 (5)0.0963 (4)0.0575 (12)
H16A0.12950.55380.09230.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0588 (8)0.0939 (11)0.1023 (11)0.0264 (7)0.0267 (8)0.0357 (8)
O10.104 (3)0.067 (2)0.066 (2)0.047 (2)0.023 (2)0.0268 (18)
O20.161 (4)0.177 (4)0.075 (3)0.115 (3)0.076 (3)0.085 (3)
O30.118 (3)0.119 (3)0.127 (3)0.084 (3)0.050 (3)0.033 (3)
O40.137 (4)0.122 (3)0.136 (4)0.083 (3)0.037 (3)0.013 (3)
O50.0501 (19)0.0528 (18)0.097 (2)0.0245 (16)0.0248 (17)0.0461 (18)
N10.065 (2)0.042 (2)0.092 (3)0.0293 (19)0.037 (2)0.035 (2)
N20.064 (3)0.073 (3)0.099 (3)0.039 (2)0.039 (2)0.050 (3)
C10.169 (7)0.195 (7)0.096 (5)0.143 (6)0.064 (5)0.062 (5)
C20.239 (9)0.150 (6)0.093 (5)0.133 (6)0.082 (6)0.067 (5)
C30.100 (4)0.053 (3)0.064 (3)0.036 (3)0.039 (3)0.028 (3)
C40.127 (4)0.126 (4)0.125 (4)0.092 (3)0.056 (3)0.047 (3)
C50.127 (4)0.126 (4)0.125 (4)0.092 (3)0.056 (3)0.047 (3)
C60.084 (3)0.078 (3)0.058 (3)0.046 (3)0.034 (3)0.032 (2)
C70.059 (3)0.044 (2)0.060 (3)0.029 (2)0.027 (3)0.027 (2)
C80.051 (3)0.038 (2)0.057 (3)0.027 (2)0.020 (3)0.025 (2)
C90.090 (4)0.045 (3)0.053 (3)0.037 (3)0.030 (3)0.024 (2)
C100.085 (4)0.061 (3)0.104 (5)0.044 (3)0.063 (4)0.053 (3)
C110.048 (3)0.063 (3)0.120 (5)0.021 (3)0.032 (4)0.044 (4)
C120.068 (4)0.054 (3)0.065 (3)0.023 (3)0.019 (3)0.014 (3)
C130.062 (3)0.048 (3)0.062 (3)0.032 (2)0.031 (2)0.025 (2)
C140.068 (3)0.053 (3)0.113 (4)0.039 (3)0.041 (3)0.044 (3)
C150.062 (3)0.059 (3)0.060 (3)0.025 (3)0.036 (3)0.027 (2)
C160.053 (3)0.048 (3)0.068 (3)0.021 (2)0.027 (3)0.026 (2)
Geometric parameters (Å, º) top
Cl—C151.720 (5)C3—H3A0.9800
O1—C11.410 (6)C4—H4A0.9600
O1—C31.383 (5)C4—H4B0.9600
O2—C21.318 (6)C4—H4C0.9600
O2—C31.373 (5)C5—C61.498 (8)
O3—C41.453 (6)C6—C71.528 (6)
O3—C51.250 (7)C6—H6A0.9800
O4—C51.186 (8)C7—C81.363 (5)
O5—C81.393 (4)C7—C121.376 (6)
O5—C131.341 (5)C8—C91.370 (6)
N1—C131.343 (5)C9—C101.378 (6)
N1—C141.327 (5)C9—H9A0.9300
N2—C141.316 (5)C10—C111.361 (7)
N2—C151.343 (5)C10—H10A0.9300
C1—H1B0.9600C11—C121.390 (7)
C1—H1C0.9600C11—H11A0.9300
C1—H1D0.9600C12—H12A0.9300
C2—H2B0.9600C13—C161.359 (5)
C2—H2C0.9600C14—H14A0.9300
C2—H2D0.9600C15—C161.370 (5)
C3—C61.452 (6)C16—H16A0.9300
C3—O1—C1117.8 (4)C5—C6—C7108.8 (4)
C2—O2—C3126.5 (5)C3—C6—H6A106.1
C5—O3—C4117.8 (5)C5—C6—H6A106.1
C13—O5—C8121.1 (3)C7—C6—H6A106.1
C14—N1—C13114.1 (4)C8—C7—C12116.5 (4)
C14—N2—C15114.3 (4)C8—C7—C6119.9 (4)
O1—C1—H1B109.5C12—C7—C6123.6 (4)
O1—C1—H1C109.5C7—C8—C9123.0 (4)
H1B—C1—H1C109.5C7—C8—O5117.6 (4)
O1—C1—H1D109.5C9—C8—O5118.9 (4)
H1B—C1—H1D109.5C8—C9—C10118.9 (4)
H1C—C1—H1D109.5C8—C9—H9A120.5
O2—C2—H2B109.5C10—C9—H9A120.5
O2—C2—H2C109.5C11—C10—C9120.4 (5)
H2B—C2—H2C109.5C11—C10—H10A119.8
O2—C2—H2D109.5C9—C10—H10A119.8
H2B—C2—H2D109.5C10—C11—C12118.7 (5)
H2C—C2—H2D109.5C10—C11—H11A120.6
O2—C3—O1114.2 (4)C12—C11—H11A120.6
O2—C3—C6109.9 (4)C7—C12—C11122.4 (5)
O1—C3—C6111.5 (4)C7—C12—H12A118.8
O2—C3—H3A107.0C11—C12—H12A118.8
O1—C3—H3A107.0O5—C13—N1119.0 (4)
C6—C3—H3A107.0O5—C13—C16117.2 (4)
O3—C4—H4A109.5N1—C13—C16123.9 (4)
O3—C4—H4B109.5N2—C14—N1128.5 (4)
H4A—C4—H4B109.5N2—C14—H14A115.7
O3—C4—H4C109.5N1—C14—H14A115.7
H4A—C4—H4C109.5N2—C15—C16123.5 (4)
H4B—C4—H4C109.5N2—C15—Cl116.9 (4)
O4—C5—O3123.8 (7)C16—C15—Cl119.6 (4)
O4—C5—C6124.5 (7)C13—C16—C15115.6 (4)
O3—C5—C6111.6 (7)C13—C16—H16A122.2
C3—C6—C5112.0 (5)C15—C16—H16A122.2
C3—C6—C7117.1 (4)
C2—O2—C3—O167.6 (7)C13—O5—C8—C7114.9 (4)
C2—O2—C3—C6166.3 (6)C13—O5—C8—C972.8 (5)
C1—O1—C3—O287.6 (6)C7—C8—C9—C101.4 (6)
C1—O1—C3—C6147.2 (5)O5—C8—C9—C10173.3 (3)
C4—O3—C5—O43.6 (11)C8—C9—C10—C111.0 (6)
C4—O3—C5—C6173.0 (5)C9—C10—C11—C120.4 (7)
O2—C3—C6—C553.2 (6)C8—C7—C12—C110.5 (6)
O1—C3—C6—C5179.1 (5)C6—C7—C12—C11178.8 (4)
O2—C3—C6—C7179.9 (4)C10—C11—C12—C70.1 (7)
O1—C3—C6—C752.5 (6)C8—O5—C13—N112.4 (6)
O4—C5—C6—C354.2 (10)C8—O5—C13—C16169.3 (4)
O3—C5—C6—C3129.3 (6)C14—N1—C13—O5178.4 (4)
O4—C5—C6—C776.8 (8)C14—N1—C13—C160.2 (6)
O3—C5—C6—C799.7 (6)C15—N2—C14—N10.9 (8)
C3—C6—C7—C8128.5 (4)C13—N1—C14—N20.0 (8)
C5—C6—C7—C8103.3 (5)C14—N2—C15—C162.0 (7)
C3—C6—C7—C1253.2 (6)C14—N2—C15—Cl177.9 (4)
C5—C6—C7—C1275.0 (6)O5—C13—C16—C15179.4 (4)
C12—C7—C8—C91.1 (6)N1—C13—C16—C151.2 (7)
C6—C7—C8—C9179.5 (4)N2—C15—C16—C132.2 (7)
C12—C7—C8—O5173.1 (3)Cl—C15—C16—C13177.7 (3)
C6—C7—C8—O58.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O50.982.252.777 (6)113
C1—H1B···Cg2i0.962.973.696 (5)134
C16—H16A···Cg1i0.932.853.661 (4)146
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H17ClN2O5
Mr352.77
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.5030 (19), 10.051 (2), 11.162 (2)
α, β, γ (°)101.24 (3), 108.47 (3), 113.42 (3)
V3)862.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.952, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3346, 3140, 1427
Rint0.035
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.173, 1.07
No. of reflections3140
No. of parameters211
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.45

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O50.982.252.777 (6)113
C1—H1B···Cg2i0.962.973.696 (5)134
C16—H16A···Cg1i0.932.853.661 (4)146
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBowden, M. C. & Brown, S. M. (1996). UK Patent Appl. GB2291874.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds