organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­phenyl-4-(2-thien­yl)-1,4-di­hydro­pyridine-3,5-dicarbo­nitrile

aDepartment of Chemistry, Xuzhou Medical College, Jiangsu 221004, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 10 August 2009; accepted 21 August 2009; online 26 August 2009)

The asymmetric unit of the title compound, C23H15N3S, contains two crystallographically independent mol­ecules. The pyridine rings adopt envelope conformations. The thio­phene rings are oriented at dihedral angles of 77.97 (4)/53.53 (4) and 78.44 (4)/57.11 (4)° with respect to the phenyl rings, while the dihedral angles between the phenyl rings are 48.51 (4) and 44.49 (4)°. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains along the c axis. The S, C and H atoms of one of the thio­phene rings are disordered over two orientations, with occupancy ratios of 0.314 (15):0.686 (15).

Related literature

For general background to the synthesis of pyridines with a multi-aryl substitution pattern, see: Adib et al. (2006[Adib, M., Tahermansouri, H., Koloogani, S. A., Mohammadia, B. & Bijanzadeh, H. R. (2006). Tetrahedron Lett. 47, 5957-5960.]); Cave & Raston (2000[Cave, G. W. V. & Raston, C. L. (2000). Chem. Commun. pp. 2199-2200.]); Kobayashi et al. (1991[Kobayashi, T., Kakiuchi, H. & Kato, H. (1991). Bull. Chem. Soc. Jpn, 64, 392-395.]); Kröhnke (1963[Kröhnke, F. (1963). Angew. Chem. Int. Ed. Engl. 2, 380-393.], 1976[Kröhnke, F. (1976). Synthesis, pp. 1-24.]); Kumar et al. (2006[Kumar, A., Koul, S., Razdan, T. K. & Kapoor, K. K. (2006). Tetrahedron Lett. 47, 837-842.]); Tu et al. (2005a[Tu, S., Li, T., Shi, F., Fang, F., Zhu, S., Wei, X. & Zong, Z. (2005a). Chem. Lett. 34, 732-733.],b[Tu, S., Li, T., Shi, F., Wang, Q., Zhang, J., Xu, J., Zhu, X., Zhang, X., Zhu, S. & Shi, D. (2005b). Synthesis, pp. 3045-3050.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15N3S

  • Mr = 365.44

  • Triclinic, [P \overline 1]

  • a = 11.2726 (14) Å

  • b = 11.8903 (15) Å

  • c = 14.5544 (17) Å

  • α = 86.571 (2)°

  • β = 88.755 (2)°

  • γ = 81.249 (1)°

  • V = 1924.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 298 K

  • 0.40 × 0.31 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.948

  • 10076 measured reflections

  • 6647 independent reflections

  • 3520 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.199

  • S = 1.07

  • 6647 reflections

  • 524 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5 0.86 2.10 2.956 (3) 173
N4—H4⋯N2i 0.86 2.19 3.042 (3) 172
Symmetry code: (i) x, y, z - 1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridines are of interest because of the occurrence of their saturated and partially saturated derivatives in biologically active compounds and natural products such as NAD nucleotides, pyridoxol (vitamin B6), and pyridine alkaloids. Pyridines with a multi-aryl substitution pattern have been synthesized using various methods and procedures. Traditionally, these compounds have been synthesized through the reaction of N-phenacylpyridinium salts with unsaturated ketones in the presence of ammonium acetate (Kröhnke, 1963; Kröhnke, 1976). More recently, several new improved methods and procedures have been developed for the syntheses of these pyridines (Kobayashi et al., 1991; Kumar et al. 2006), including solvent-free condition (Adib et al., 2006; Cave & Raston, 2000) and microwave heating (Tu et al., 2005a; Tu et al., 2005b). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules, in which they are linked through the intramolecular N-H···N hydrogen bond (Table 1, Fig. 1). The pyridine rings A (N1/C1-C5) and E (N4/C24-C28) adopt envelope conformations with atoms C3 and C26 displaced by 0.180 (3) and 0.238 (3) Å from the planes of the other ring atoms, respectively. Rings B (C6-C11), C (S1/C13-C16), D (C18-C23) and F (C29-C34), G (S2/C36-C39), H (C41-C46) are, of course, planar and they are oriented at dihedral angles of B/C = 77.97 (4), B/D = 48.51 (4), C/D = 53.53 (4) ° and F/G = 78.44 (4), F/H = 44.49 (4) °, G/H = 57.11 (4) °.

In the crystal structure, intra- and intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to the synthesis of pyridines with a multi-aryl substitution pattern, see: Adib et al. (2006); Cave & Raston (2000); Kobayashi et al. (1991); Kröhnke (1963, 1976); Kumar et al. (2006); Tu et al. (2005a,b).

Experimental top

The title compound was prepared in 10-ml vial, 3-oxo-3-phenylpropanenitrile (0.15 g, 1 mmol), thiophene-2-carbaldehyde (0.11 g, 1 mmol), ammonium acetate (0.5 g) and water (2.0 ml) were mixed, and then capped. The mixture was irradiated for 16 min at 423 K (initial power 150 W and maximum power 250 W).

Refinement top

H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.98 Å for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). S2, C37, C38, C39, H37, H38 and H39 atoms of the thiophene ring attached at C26 are disordered over two orientations. During the refinement process, the disordered S2, C37, C38, C39, H37, H38, H39 and S2', C37', C38', C39', H37', H38', H39' atoms were refined with occupancies of 0.314 (15) and 0.686 (15), respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
2,6-Diphenyl-4-(2-thienyl)-1,4-dihydropyridine-3,5-dicarbonitrile top
Crystal data top
C23H15N3SZ = 4
Mr = 365.44F(000) = 760
Triclinic, P1Dx = 1.261 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2726 (14) ÅCell parameters from 2139 reflections
b = 11.8903 (15) Åθ = 2.3–24.9°
c = 14.5544 (17) ŵ = 0.18 mm1
α = 86.571 (2)°T = 298 K
β = 88.755 (2)°Block, yellow
γ = 81.249 (1)°0.40 × 0.31 × 0.30 mm
V = 1924.5 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6647 independent reflections
Radiation source: fine-focus sealed tube3520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 813
Tmin = 0.932, Tmax = 0.948k = 1214
10076 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0913P)2]
where P = (Fo2 + 2Fc2)/3
6647 reflections(Δ/σ)max = 0.001
524 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C23H15N3Sγ = 81.249 (1)°
Mr = 365.44V = 1924.5 (4) Å3
Triclinic, P1Z = 4
a = 11.2726 (14) ÅMo Kα radiation
b = 11.8903 (15) ŵ = 0.18 mm1
c = 14.5544 (17) ÅT = 298 K
α = 86.571 (2)°0.40 × 0.31 × 0.30 mm
β = 88.755 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3520 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.948Rint = 0.026
10076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
6647 reflectionsΔρmin = 0.50 e Å3
524 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.15432 (13)0.07649 (11)1.06543 (10)0.0921 (5)
S20.4086 (13)0.1479 (9)0.7278 (7)0.133 (4)0.314 (15)
S2'0.4830 (7)0.0834 (5)0.5978 (5)0.131 (2)0.686 (15)
N10.8726 (3)0.2896 (2)0.94731 (17)0.0443 (7)
H10.83200.28210.89930.053*
N20.8246 (3)0.2069 (3)1.2711 (2)0.0662 (9)
N31.2341 (3)0.4398 (3)0.9984 (2)0.0646 (9)
N40.6938 (3)0.2732 (2)0.44938 (17)0.0507 (8)
H40.73730.25460.40180.061*
N50.7532 (3)0.2538 (3)0.7749 (2)0.0673 (10)
N60.2860 (3)0.4465 (3)0.4966 (2)0.0709 (10)
C10.8299 (3)0.2556 (3)1.0316 (2)0.0402 (8)
C20.8961 (3)0.2574 (3)1.1076 (2)0.0407 (8)
C31.0226 (3)0.2887 (3)1.1043 (2)0.0428 (8)
H31.02460.34781.14800.051*
C41.0467 (3)0.3400 (3)1.0091 (2)0.0418 (8)
C50.9770 (3)0.3352 (3)0.9359 (2)0.0429 (8)
C60.7073 (3)0.2246 (3)1.0299 (2)0.0441 (8)
C70.6763 (4)0.1307 (3)1.0811 (2)0.0599 (10)
H70.73270.08541.11840.072*
C80.5609 (4)0.1051 (4)1.0764 (3)0.0722 (12)
H80.54010.04211.11030.087*
C90.4776 (4)0.1718 (4)1.0224 (3)0.0711 (12)
H90.40010.15421.02020.085*
C100.5065 (4)0.2637 (3)0.9715 (3)0.0623 (11)
H100.44930.30870.93470.075*
C110.6212 (3)0.2898 (3)0.9749 (2)0.0514 (9)
H110.64110.35230.93970.062*
C120.8522 (3)0.2293 (3)1.1969 (2)0.0472 (9)
C131.1162 (3)0.1895 (3)1.1329 (2)0.0514 (9)
C141.1826 (4)0.1745 (3)1.2162 (3)0.0629 (11)
H141.17630.22541.26280.075*
C151.2610 (4)0.0671 (5)1.2155 (4)0.0915 (16)
H151.31230.04001.26380.110*
C161.2544 (4)0.0088 (4)1.1400 (4)0.0870 (15)
H161.30050.06141.13040.104*
C171.1503 (4)0.3958 (3)1.0003 (2)0.0466 (9)
C180.9985 (3)0.3797 (3)0.8404 (2)0.0482 (9)
C190.9072 (4)0.4475 (3)0.7920 (2)0.0568 (10)
H190.83370.46960.82100.068*
C200.9240 (5)0.4825 (3)0.7014 (3)0.0739 (13)
H200.86230.52820.66940.089*
C211.0329 (6)0.4495 (4)0.6583 (3)0.0845 (15)
H211.04420.47240.59690.101*
C221.1238 (5)0.3836 (4)0.7049 (3)0.0860 (15)
H221.19720.36270.67550.103*
C231.1080 (4)0.3474 (4)0.7958 (3)0.0678 (11)
H231.17030.30160.82710.081*
C240.7442 (3)0.2505 (3)0.5357 (2)0.0468 (9)
C250.6731 (3)0.2670 (3)0.6107 (2)0.0456 (9)
C260.5381 (3)0.2973 (3)0.6072 (2)0.0557 (10)
H260.51440.36010.64770.067*
C270.5019 (3)0.3403 (3)0.5100 (2)0.0476 (9)
C280.5775 (3)0.3242 (3)0.4368 (2)0.0453 (8)
C290.8750 (3)0.2102 (3)0.5369 (2)0.0514 (9)
C300.9234 (4)0.1189 (4)0.5951 (3)0.0726 (12)
H300.87350.08180.63410.087*
C311.0459 (5)0.0831 (5)0.5952 (3)0.0967 (16)
H311.07810.02090.63330.116*
C321.1197 (5)0.1388 (6)0.5395 (4)0.1023 (17)
H321.20230.11580.54100.123*
C331.0726 (4)0.2285 (5)0.4814 (3)0.0879 (15)
H331.12320.26550.44300.106*
C340.9508 (4)0.2643 (4)0.4795 (3)0.0677 (11)
H340.91930.32500.43960.081*
C350.7223 (3)0.2582 (3)0.7005 (2)0.0505 (9)
C360.4766 (4)0.2004 (5)0.6415 (3)0.0850 (15)
C370.492 (4)0.111 (4)0.568 (3)0.097 (11)0.314 (15)
H370.52700.12040.51000.117*0.314 (15)
C37'0.4036 (13)0.2143 (13)0.7245 (9)0.104 (4)0.686 (15)
H37'0.38990.27840.75900.125*0.686 (15)
C380.442 (2)0.008 (3)0.6026 (17)0.106 (9)0.314 (15)
H380.44460.05790.57110.128*0.314 (15)
C38'0.3546 (15)0.1055 (15)0.7434 (10)0.123 (4)0.686 (15)
H38'0.30350.09240.79270.147*0.686 (15)
C390.390 (16)0.025 (15)0.691 (11)0.11 (3)0.314 (15)
H390.35080.02720.72440.130*0.314 (15)
C39'0.395 (7)0.024 (7)0.678 (5)0.115 (18)0.686 (15)
H39'0.37650.04950.67820.138*0.686 (15)
C400.3836 (4)0.3998 (3)0.4991 (2)0.0507 (9)
C410.5466 (3)0.3632 (3)0.3408 (2)0.0475 (9)
C420.4461 (4)0.3353 (3)0.2997 (3)0.0656 (11)
H420.39640.29140.33280.079*
C430.4195 (5)0.3726 (4)0.2094 (3)0.0792 (14)
H430.35100.35520.18230.095*
C440.4940 (5)0.4350 (4)0.1603 (3)0.0795 (15)
H440.47660.45860.09930.095*
C450.5935 (5)0.4630 (3)0.1995 (3)0.0716 (13)
H450.64320.50620.16570.086*
C460.6204 (4)0.4267 (3)0.2904 (2)0.0592 (10)
H460.68840.44540.31720.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0863 (10)0.0734 (8)0.1132 (10)0.0033 (7)0.0117 (8)0.0120 (7)
S20.149 (8)0.130 (10)0.123 (6)0.051 (8)0.024 (5)0.031 (7)
S2'0.164 (4)0.096 (4)0.148 (5)0.078 (3)0.014 (4)0.014 (3)
N10.0490 (18)0.0587 (17)0.0283 (14)0.0186 (15)0.0033 (12)0.0004 (12)
N20.060 (2)0.099 (3)0.0362 (18)0.0057 (19)0.0060 (15)0.0059 (16)
N30.057 (2)0.078 (2)0.061 (2)0.017 (2)0.0030 (17)0.0001 (17)
N40.052 (2)0.0696 (19)0.0288 (15)0.0018 (16)0.0001 (13)0.0033 (13)
N50.086 (3)0.082 (2)0.0387 (18)0.027 (2)0.0131 (17)0.0002 (15)
N60.059 (2)0.089 (3)0.061 (2)0.001 (2)0.0012 (18)0.0019 (18)
C10.044 (2)0.0445 (19)0.0316 (18)0.0061 (16)0.0029 (15)0.0032 (14)
C20.043 (2)0.050 (2)0.0287 (17)0.0051 (16)0.0019 (15)0.0001 (14)
C30.048 (2)0.049 (2)0.0325 (17)0.0087 (17)0.0016 (15)0.0049 (14)
C40.044 (2)0.0458 (19)0.0361 (18)0.0089 (17)0.0008 (16)0.0025 (14)
C50.048 (2)0.0453 (19)0.0368 (18)0.0106 (17)0.0044 (16)0.0031 (14)
C60.046 (2)0.055 (2)0.0321 (17)0.0134 (18)0.0011 (15)0.0000 (15)
C70.060 (3)0.074 (3)0.047 (2)0.020 (2)0.0070 (19)0.0119 (19)
C80.070 (3)0.084 (3)0.068 (3)0.037 (3)0.004 (2)0.015 (2)
C90.057 (3)0.095 (3)0.067 (3)0.029 (3)0.002 (2)0.003 (2)
C100.051 (3)0.073 (3)0.063 (3)0.008 (2)0.008 (2)0.002 (2)
C110.050 (2)0.058 (2)0.046 (2)0.0087 (19)0.0017 (17)0.0020 (17)
C120.047 (2)0.060 (2)0.033 (2)0.0029 (18)0.0006 (16)0.0023 (16)
C130.047 (2)0.055 (2)0.053 (2)0.0143 (19)0.0028 (17)0.0066 (17)
C140.056 (3)0.072 (3)0.056 (2)0.001 (2)0.017 (2)0.0124 (19)
C150.070 (3)0.109 (4)0.086 (4)0.000 (3)0.018 (3)0.041 (3)
C160.073 (3)0.068 (3)0.112 (4)0.002 (3)0.003 (3)0.028 (3)
C170.049 (2)0.052 (2)0.0379 (19)0.007 (2)0.0013 (17)0.0018 (15)
C180.061 (3)0.052 (2)0.0356 (19)0.0237 (19)0.0055 (18)0.0029 (15)
C190.074 (3)0.059 (2)0.039 (2)0.021 (2)0.0046 (19)0.0040 (17)
C200.112 (4)0.068 (3)0.046 (2)0.030 (3)0.013 (3)0.0098 (19)
C210.127 (5)0.090 (3)0.044 (2)0.046 (3)0.007 (3)0.007 (2)
C220.097 (4)0.114 (4)0.053 (3)0.035 (3)0.030 (3)0.009 (3)
C230.071 (3)0.086 (3)0.046 (2)0.015 (2)0.011 (2)0.002 (2)
C240.054 (2)0.057 (2)0.0306 (18)0.0107 (18)0.0064 (16)0.0010 (15)
C250.057 (2)0.052 (2)0.0295 (18)0.0136 (18)0.0056 (16)0.0013 (14)
C260.063 (3)0.069 (2)0.0342 (19)0.007 (2)0.0037 (17)0.0001 (17)
C270.052 (2)0.054 (2)0.0367 (19)0.0095 (19)0.0072 (17)0.0033 (15)
C280.049 (2)0.052 (2)0.0349 (19)0.0094 (18)0.0035 (16)0.0006 (15)
C290.054 (2)0.067 (2)0.0339 (19)0.010 (2)0.0088 (17)0.0008 (16)
C300.064 (3)0.089 (3)0.059 (3)0.002 (3)0.008 (2)0.012 (2)
C310.078 (4)0.121 (4)0.080 (3)0.016 (3)0.015 (3)0.015 (3)
C320.061 (3)0.153 (5)0.088 (4)0.005 (4)0.008 (3)0.012 (4)
C330.058 (3)0.133 (4)0.074 (3)0.020 (3)0.003 (2)0.001 (3)
C340.059 (3)0.087 (3)0.057 (2)0.012 (2)0.007 (2)0.001 (2)
C350.061 (2)0.059 (2)0.035 (2)0.0192 (19)0.0027 (17)0.0023 (16)
C360.066 (3)0.114 (4)0.071 (3)0.021 (3)0.011 (2)0.051 (3)
C370.098 (17)0.09 (2)0.11 (2)0.041 (16)0.004 (15)0.040 (15)
C37'0.117 (8)0.092 (8)0.092 (6)0.014 (8)0.030 (5)0.059 (7)
C380.108 (18)0.11 (2)0.103 (17)0.028 (15)0.010 (14)0.017 (15)
C38'0.108 (10)0.121 (11)0.138 (11)0.038 (9)0.004 (8)0.050 (8)
C390.11 (5)0.11 (7)0.11 (4)0.04 (4)0.02 (3)0.03 (4)
C39'0.11 (3)0.11 (3)0.13 (3)0.05 (2)0.03 (2)0.06 (2)
C400.056 (3)0.060 (2)0.0370 (19)0.012 (2)0.0009 (18)0.0019 (16)
C410.056 (2)0.053 (2)0.0319 (18)0.0024 (19)0.0012 (17)0.0003 (15)
C420.069 (3)0.081 (3)0.046 (2)0.007 (2)0.012 (2)0.0040 (19)
C430.084 (3)0.098 (3)0.051 (3)0.009 (3)0.028 (2)0.008 (2)
C440.105 (4)0.083 (3)0.037 (2)0.028 (3)0.010 (3)0.003 (2)
C450.095 (4)0.067 (3)0.044 (2)0.007 (3)0.014 (2)0.0105 (19)
C460.070 (3)0.063 (2)0.042 (2)0.004 (2)0.0002 (19)0.0006 (18)
Geometric parameters (Å, º) top
S1—C161.664 (5)C21—C221.359 (7)
S1—C131.708 (4)C21—H210.9300
S2—C361.603 (11)C22—C231.382 (5)
S2—C391.62 (17)C22—H220.9300
S2'—C361.555 (10)C23—H230.9300
S2'—C39'1.70 (8)C24—C251.346 (5)
N1—C11.370 (4)C24—C291.479 (5)
N1—C51.372 (4)C25—C351.423 (5)
N1—H10.8600C25—C261.511 (5)
N2—C121.145 (4)C26—C361.488 (6)
N3—C171.146 (4)C26—C271.518 (4)
N4—C281.369 (4)C26—H260.9800
N4—C241.385 (4)C27—C281.354 (5)
N4—H40.8600C27—C401.419 (5)
N5—C351.140 (4)C28—C411.477 (4)
N6—C401.155 (5)C29—C341.384 (5)
C1—C21.350 (4)C29—C301.387 (5)
C1—C61.484 (5)C30—C311.381 (6)
C2—C121.421 (4)C30—H300.9300
C2—C31.526 (5)C31—C321.365 (7)
C3—C131.504 (5)C31—H310.9300
C3—C41.516 (4)C32—C331.370 (7)
C3—H30.9800C32—H320.9300
C4—C51.346 (4)C33—C341.374 (6)
C4—C171.429 (5)C33—H330.9300
C5—C181.485 (4)C34—H340.9300
C6—C111.383 (5)C36—C37'1.450 (15)
C6—C71.390 (5)C36—C371.54 (6)
C7—C81.383 (5)C37—C381.48 (5)
C7—H70.9300C37—H370.9300
C8—C91.364 (5)C37'—C38'1.49 (3)
C8—H80.9300C37'—H37'0.9300
C9—C101.360 (5)C38—C391.42 (15)
C9—H90.9300C38—H380.9300
C10—C111.377 (5)C38'—C39'1.42 (7)
C10—H100.9300C38'—H38'0.9300
C11—H110.9300C39—H390.9300
C13—C141.426 (5)C39'—H39'0.9300
C14—C151.439 (6)C41—C461.377 (5)
C14—H140.9300C41—C421.386 (5)
C15—C161.344 (7)C42—C431.386 (5)
C15—H150.9300C42—H420.9300
C16—H160.9300C43—C441.366 (7)
C18—C191.384 (5)C43—H430.9300
C18—C231.394 (5)C44—C451.364 (7)
C19—C201.378 (5)C44—H440.9300
C19—H190.9300C45—C461.392 (5)
C20—C211.379 (7)C45—H450.9300
C20—H200.9300C46—H460.9300
C16—S1—C1393.3 (3)C24—C25—C35121.1 (3)
C36—S2—C39101 (6)C24—C25—C26123.9 (3)
C36—S2'—C39'97 (3)C35—C25—C26115.0 (3)
C1—N1—C5123.1 (3)C36—C26—C25112.0 (3)
C1—N1—H1118.5C36—C26—C27112.5 (3)
C5—N1—H1118.5C25—C26—C27109.1 (3)
C28—N4—C24122.6 (3)C36—C26—H26107.7
C28—N4—H4118.7C25—C26—H26107.7
C24—N4—H4118.7C27—C26—H26107.7
C2—C1—N1120.0 (3)C28—C27—C40120.9 (3)
C2—C1—C6125.8 (3)C28—C27—C26122.6 (3)
N1—C1—C6114.2 (3)C40—C27—C26116.5 (3)
C1—C2—C12121.7 (3)C27—C28—N4120.1 (3)
C1—C2—C3123.1 (3)C27—C28—C41124.8 (3)
C12—C2—C3115.2 (3)N4—C28—C41115.0 (3)
C13—C3—C4112.7 (3)C34—C29—C30119.1 (4)
C13—C3—C2112.4 (3)C34—C29—C24119.8 (3)
C4—C3—C2109.0 (3)C30—C29—C24121.0 (4)
C13—C3—H3107.5C31—C30—C29120.0 (5)
C4—C3—H3107.5C31—C30—H30120.0
C2—C3—H3107.5C29—C30—H30120.0
C5—C4—C17120.5 (3)C32—C31—C30120.2 (5)
C5—C4—C3123.8 (3)C32—C31—H31119.9
C17—C4—C3115.7 (3)C30—C31—H31119.9
C4—C5—N1119.6 (3)C31—C32—C33120.2 (5)
C4—C5—C18126.3 (3)C31—C32—H32119.9
N1—C5—C18114.1 (3)C33—C32—H32119.9
C11—C6—C7118.6 (3)C32—C33—C34120.4 (5)
C11—C6—C1119.4 (3)C32—C33—H33119.8
C7—C6—C1122.0 (3)C34—C33—H33119.8
C8—C7—C6119.6 (4)C33—C34—C29120.1 (4)
C8—C7—H7120.2C33—C34—H34119.9
C6—C7—H7120.2C29—C34—H34119.9
C9—C8—C7120.4 (4)N5—C35—C25174.9 (4)
C9—C8—H8119.8C37'—C36—C26117.7 (8)
C7—C8—H8119.8C37'—C36—C37133.3 (15)
C10—C9—C8120.7 (4)C26—C36—C37108.1 (13)
C10—C9—H9119.6C37'—C36—S2'115.5 (7)
C8—C9—H9119.6C26—C36—S2'126.7 (5)
C9—C10—C11119.5 (4)C26—C36—S2144.7 (6)
C9—C10—H10120.2C37—C36—S2107.0 (12)
C11—C10—H10120.2S2'—C36—S287.6 (5)
C10—C11—C6121.1 (3)C38—C37—C36110 (3)
C10—C11—H11119.5C38—C37—H37125.0
C6—C11—H11119.5C36—C37—H37125.0
N2—C12—C2175.2 (4)C36—C37'—C38'106.5 (13)
C14—C13—C3126.9 (3)C36—C37'—H37'126.8
C14—C13—S1111.4 (3)C38'—C37'—H37'126.8
C3—C13—S1121.8 (2)C39—C38—C37110 (8)
C13—C14—C15108.1 (4)C39—C38—H38125.1
C13—C14—H14126.0C37—C38—H38125.1
C15—C14—H14126.0C39'—C38'—C37'112 (4)
C16—C15—C14114.9 (4)C39'—C38'—H38'123.9
C16—C15—H15122.5C37'—C38'—H38'123.9
C14—C15—H15122.5C38—C39—S2112 (10)
C15—C16—S1112.3 (4)C38—C39—H39124.0
C15—C16—H16123.8S2—C39—H39124.0
S1—C16—H16123.8C38'—C39'—S2'109 (5)
N3—C17—C4176.3 (4)C38'—C39'—H39'125.6
C19—C18—C23118.9 (3)S2'—C39'—H39'125.6
C19—C18—C5120.4 (3)N6—C40—C27175.3 (4)
C23—C18—C5120.6 (3)C46—C41—C42119.2 (3)
C20—C19—C18120.6 (4)C46—C41—C28119.5 (3)
C20—C19—H19119.7C42—C41—C28121.3 (3)
C18—C19—H19119.7C41—C42—C43120.2 (4)
C19—C20—C21119.6 (4)C41—C42—H42119.9
C19—C20—H20120.2C43—C42—H42119.9
C21—C20—H20120.2C44—C43—C42119.8 (4)
C22—C21—C20120.5 (4)C44—C43—H43120.1
C22—C21—H21119.8C42—C43—H43120.1
C20—C21—H21119.8C45—C44—C43120.8 (4)
C21—C22—C23120.5 (5)C45—C44—H44119.6
C21—C22—H22119.7C43—C44—H44119.6
C23—C22—H22119.7C44—C45—C46119.7 (4)
C22—C23—C18119.8 (4)C44—C45—H45120.2
C22—C23—H23120.1C46—C45—H45120.2
C18—C23—H23120.1C41—C46—C45120.3 (4)
C25—C24—N4118.9 (3)C41—C46—H46119.9
C25—C24—C29125.3 (3)C45—C46—H46119.9
N4—C24—C29115.8 (3)
C5—N1—C1—C25.5 (5)C36—C26—C27—C28109.4 (4)
C5—N1—C1—C6171.6 (3)C25—C26—C27—C2815.5 (5)
N1—C1—C2—C12176.2 (3)C36—C26—C27—C4071.0 (4)
C6—C1—C2—C120.5 (5)C25—C26—C27—C40164.1 (3)
N1—C1—C2—C34.1 (5)C40—C27—C28—N4175.7 (3)
C6—C1—C2—C3179.2 (3)C26—C27—C28—N43.9 (5)
C1—C2—C3—C13113.5 (3)C40—C27—C28—C411.0 (5)
C12—C2—C3—C1366.2 (4)C26—C27—C28—C41179.5 (3)
C1—C2—C3—C412.1 (4)C24—N4—C28—C279.1 (5)
C12—C2—C3—C4168.1 (3)C24—N4—C28—C41167.9 (3)
C13—C3—C4—C5112.6 (4)C25—C24—C29—C34134.3 (4)
C2—C3—C4—C512.8 (4)N4—C24—C29—C3445.1 (5)
C13—C3—C4—C1767.3 (4)C25—C24—C29—C3045.4 (5)
C2—C3—C4—C17167.2 (3)N4—C24—C29—C30135.2 (4)
C17—C4—C5—N1174.7 (3)C34—C29—C30—C310.1 (6)
C3—C4—C5—N15.4 (5)C24—C29—C30—C31179.8 (4)
C17—C4—C5—C182.5 (5)C29—C30—C31—C321.4 (8)
C3—C4—C5—C18177.4 (3)C30—C31—C32—C331.8 (8)
C1—N1—C5—C44.9 (5)C31—C32—C33—C340.9 (8)
C1—N1—C5—C18172.6 (3)C32—C33—C34—C290.4 (7)
C2—C1—C6—C11136.5 (4)C30—C29—C34—C330.8 (6)
N1—C1—C6—C1140.4 (4)C24—C29—C34—C33178.9 (4)
C2—C1—C6—C744.3 (5)C25—C26—C36—C37'115.4 (7)
N1—C1—C6—C7138.8 (3)C27—C26—C36—C37'121.2 (7)
C11—C6—C7—C80.3 (6)C25—C26—C36—C3773.3 (19)
C1—C6—C7—C8179.5 (3)C27—C26—C36—C3750.0 (19)
C6—C7—C8—C90.4 (6)C25—C26—C36—S2'64.0 (6)
C7—C8—C9—C100.7 (7)C27—C26—C36—S2'59.3 (6)
C8—C9—C10—C110.2 (6)C25—C26—C36—S2100.2 (11)
C9—C10—C11—C60.6 (6)C27—C26—C36—S2136.5 (10)
C7—C6—C11—C100.8 (5)C39'—S2'—C36—C37'1 (3)
C1—C6—C11—C10180.0 (3)C39'—S2'—C36—C26178 (3)
C4—C3—C13—C14127.8 (4)C39'—S2'—C36—C37155 (7)
C2—C3—C13—C14108.6 (4)C39'—S2'—C36—S27 (3)
C4—C3—C13—S153.0 (4)C39—S2—C36—C37'158 (7)
C2—C3—C13—S170.6 (3)C39—S2—C36—C26174 (6)
C16—S1—C13—C140.3 (3)C39—S2—C36—C370 (7)
C16—S1—C13—C3179.5 (3)C39—S2—C36—S2'6 (6)
C3—C13—C14—C15179.2 (3)C37'—C36—C37—C3816 (4)
S1—C13—C14—C150.0 (4)C26—C36—C37—C38175 (2)
C13—C14—C15—C160.4 (6)S2'—C36—C37—C3817 (3)
C14—C15—C16—S10.6 (6)S2—C36—C37—C381 (3)
C13—S1—C16—C150.5 (4)C36—C37—C38—C393 (8)
C4—C5—C18—C19131.2 (4)C37—C38—C39—S23 (12)
N1—C5—C18—C1946.1 (4)C36—S2—C39—C382 (11)
C4—C5—C18—C2353.4 (5)C26—C36—C37'—C38'179.3 (7)
N1—C5—C18—C23129.2 (4)C37—C36—C37'—C38'12 (3)
C23—C18—C19—C200.0 (5)S2'—C36—C37'—C38'0.2 (12)
C5—C18—C19—C20175.5 (3)S2—C36—C37'—C38'17.5 (15)
C18—C19—C20—C210.2 (6)C36—C37'—C38'—C39'1 (4)
C19—C20—C21—C220.6 (7)C37'—C38'—C39'—S2'2 (5)
C20—C21—C22—C230.9 (7)C36—S2'—C39'—C38'2 (5)
C21—C22—C23—C180.7 (6)C27—C28—C41—C46128.1 (4)
C19—C18—C23—C220.3 (6)N4—C28—C41—C4648.7 (4)
C5—C18—C23—C22175.7 (3)C27—C28—C41—C4253.3 (5)
C28—N4—C24—C257.7 (5)N4—C28—C41—C42129.9 (4)
C28—N4—C24—C29171.7 (3)C46—C41—C42—C431.0 (6)
N4—C24—C25—C35172.4 (3)C28—C41—C42—C43179.7 (3)
C29—C24—C25—C357.0 (5)C41—C42—C43—C441.4 (6)
N4—C24—C25—C266.8 (5)C42—C43—C44—C451.2 (7)
C29—C24—C25—C26173.8 (3)C43—C44—C45—C460.7 (7)
C24—C25—C26—C36108.1 (4)C42—C41—C46—C450.5 (5)
C35—C25—C26—C3672.7 (4)C28—C41—C46—C45179.2 (3)
C24—C25—C26—C2717.1 (5)C44—C45—C46—C410.3 (6)
C35—C25—C26—C27162.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.862.102.956 (3)173
N4—H4···N2i0.862.193.042 (3)172
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC23H15N3S
Mr365.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.2726 (14), 11.8903 (15), 14.5544 (17)
α, β, γ (°)86.571 (2), 88.755 (2), 81.249 (1)
V3)1924.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.31 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.932, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
10076, 6647, 3520
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.199, 1.07
No. of reflections6647
No. of parameters524
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.862.102.956 (3)173
N4—H4···N2i0.862.193.042 (3)172
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors are grateful to the Foundation of Xuzhou Medical College (grant No.08 K J06) for financial support.

References

First citationAdib, M., Tahermansouri, H., Koloogani, S. A., Mohammadia, B. & Bijanzadeh, H. R. (2006). Tetrahedron Lett. 47, 5957–5960.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCave, G. W. V. & Raston, C. L. (2000). Chem. Commun. pp. 2199–2200.  Web of Science CrossRef Google Scholar
First citationKobayashi, T., Kakiuchi, H. & Kato, H. (1991). Bull. Chem. Soc. Jpn, 64, 392–395.  CrossRef CAS Web of Science Google Scholar
First citationKröhnke, F. (1963). Angew. Chem. Int. Ed. Engl. 2, 380–393.  Google Scholar
First citationKröhnke, F. (1976). Synthesis, pp. 1–24.  Google Scholar
First citationKumar, A., Koul, S., Razdan, T. K. & Kapoor, K. K. (2006). Tetrahedron Lett. 47, 837–842.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S., Li, T., Shi, F., Fang, F., Zhu, S., Wei, X. & Zong, Z. (2005a). Chem. Lett. 34, 732–733.  Web of Science CSD CrossRef CAS Google Scholar
First citationTu, S., Li, T., Shi, F., Wang, Q., Zhang, J., Xu, J., Zhu, X., Zhang, X., Zhu, S. & Shi, D. (2005b). Synthesis, pp. 3045–3050.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds