metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1139-m1140

Poly[bis­­[μ4-N-(2-hy­droxy­imino­propion­yl)-N′-(2-oxido­imino­propion­yl)propane-1,3-diaminato]di­methano­lcalciumdicopper(II)]

aDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine, bDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01033 Kiev, Ukraine, cDepartment of Chemistry, Karakalpakian University, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and dDepartment of Chemistry, University of Joensuu, PO Box 111, 80101, Joensuu, Finland
*Correspondence e-mail: kalibabchuk@ukr.net

(Received 22 July 2009; accepted 21 August 2009; online 29 August 2009)

In the title compound, [CaCu2(C9H13N4O4)2(CH3OH)2]n, the CaII atom lies on an inversion center and is situated in a moderately distorted octa­hedral environment. The CuII atom is in a distorted square-pyramidal geometry, defined by four N atoms belonging to the amide and oxime groups of the triply deprotonated residue of N,N′-bis­(2-hydroxy­imino­propano­yl)propane-1,3-diamine (H4pap) and one oxime O atom from a neighboring Hpap ligand at the apical site, forming a dimeric [Cu2(Hpap)2]2− unit. Each dimeric unit connects four Ca atoms and each Ca atom links four [Cu2(Hpap)2]2− units through Ca—O(amide) bonds, leading to a three-dimensional framework. The crystal structure involves intra- and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the coordination chemistry of tetra­dentate oxime-and-amide open-chain ligands, see: Duda et al. (1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]); Fritsky et al. (1999[Fritsky, I. O., Karaczyn, A., Kozłowski, H., Głowiak, T. & Prisyazhnaya, E. V. (1999). Z. Naturforsch. Teil B, 54, 456-460.]). For oximes as efficient metal chelators, see: Gumienna-Kontecka et al. (2000[Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201-4208.]); Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.],b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]). For the use of oximes in stabilizing high oxidation states of metal ions, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]). For related structures, see: Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Fritsky (1999[Fritsky, I. O. (1999). J. Chem. Soc. Dalton Trans. pp. 825-826.]); Fritsky et al. (2000[Fritsky, I. O., Świątek-Kozłowska, J., Kapshuk, A. A., Kozłowski, H., Sliva, T. Yu., Gumienna-Kontecka, E., Prisyazhnaya, E. V. & Iskenderov, T. S. (2000). Z. Naturforsch. Teil B, 55, 966-970.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Moroz et al. (2008[Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656-5665.]); Wörl et al. (2005[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759-765.]).

[Scheme 1]

Experimental

Crystal data
  • [CaCu2(C9H13N4O4)2(CH4O)2]

  • Mr = 713.71

  • Monoclinic, P 21 /n

  • a = 10.0554 (4) Å

  • b = 8.7794 (3) Å

  • c = 15.4465 (7) Å

  • β = 97.882 (2)°

  • V = 1350.74 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 120 K

  • 0.28 × 0.24 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.622, Tmax = 0.796

  • 8392 measured reflections

  • 3074 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.04

  • 3074 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9751 (18)
Cu1—N2 1.9469 (18)
Cu1—N3 1.9320 (19)
Cu1—N4 1.9650 (18)
Cu1—O2i 2.4646 (16)
Ca1—O3 2.3134 (16)
Ca1—O4ii 2.2818 (16)
Ca1—O5 2.3811 (16)
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2 0.99 1.65 2.610 (2) 165
O5—H5O⋯O2iii 0.94 1.79 2.681 (2) 159
Symmetry code: (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N,N'-bis(2-hydroxyiminopropionylpropane)-1,2-diamine and its homologues (Duda et al., 1997; Fritsky et al., 1999), tetradentate oxime-and-amide open-chain ligands, have been intensively studied during the past 15 years as efficient polychelate ligands forming stable complexes with nickel(II) and copper(II) ions. The presence of an additional strong donor amide function in the vicinity of the oxime group results in important increase of chelating efficiency. For example, amide derivatives of 2-hydroxyiminopropanoic acid were shown to act as highly efficient chelators with respect to copper(II), nickel(II) and aluminium(III) ions (Gumienna-Kontecka et al., 2000; Onindo et al., 1995; Sliva et al., 1997a,b). Also, tetradentate oxime-and-amide open-chain ligands possess strong σ-donor capacity and thus have been successfully used for preparation of metal complexes with efficient stabilization of unusually high oxidation states of transition metal ions like CuIII and NiIII (Fritsky et al., 1998; Fritsky et al., 2006).

Earlier, the crystal and molecular structures of mononuclear anionic copper(II) complexes with N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (H4pap) of composition [Li(H2O)4][Cu(Hpap)].2H2O (Duda et al., 1997) and PPh4[Cu(Hpap)].4.5H2O (Kanderal et al., 2005) have been reported, as well as a series of modular cationic and anionic complex compounds containing [Cu(Hpap)]- anions (Fritsky et al., 2000). The present report describes the crystal structure of the title compound, a three-dimensional coordination polymer of composition [CaCu2(Hpap)2(CH3OH)2], featuring copper(II) complex anions connected by calcium ions.

The structure of the title compound is presented in Fig. 1. The ligand in the complex anion is coordinated in a tetradentate fashion forming three condensed chelate rings and being triply deprotonated. In the complex anion the CuII atom is situated in a distorted square-pyramidal geometry. The basal plane is defined by four N atoms belonging to the deprotonated amide and oxime groups of the Hpap ligand, which adopt a pseudo-macrocyclic conformation due to the presence of an intramolecular hydrogen bond uniting the cis-oximate O atoms. The apical position is occupied by the oxime O2 atom, and as a result, two neighboring Cu complex anions are united into a centrosymmetric [Cu2(Hpap)2]2- dimer, with a Cu···Cui [symmetry code: (i) -x, 2-y, -z] separation of 4.164 (1) Å. Each dimeric unit connects four Ca atoms and each Ca links four dimeric [Cu2(Hpap)2]2- units.

The basal plane of the Cu1 atom exhibits tetrahedral distortion with deviations of the N atoms from the mean plane defined by them by 0.025 (1) Å. Cu1 is displaced by 0.255 (1) Å from this plane in the direction of the apical O atom. The observed Cu—N distances (Table 1) are normal for the complexes with N-coordinated amide and oxime groups (Fritsky et al., 1998; Fritsky et al., 2006). A noticeable difference between Cu—N(amide) and Cu—N(oxime) distances is observed. The O1···O2 separation of the intramolecular hydrogen bond is equal to 2.610 (2) Å, which is close to the values reported for the analogous complexes with lithium and tetraphenylphosponium cations. The CN, CO, N—O and C—N bond lengths are typical for 2-hydroxyiminopropanoic acid and its amide derivatives (Fritsky, 1999; Mokhir et al., 2002; Moroz et al., 2008).

The CaII atom occupies a special position and is situated in moderately distorted octahedral environment (Fig. 1). The Ca—O bond distances are similar to the reported ones for six-coordinate calcium complexes (Wörl et al., 2005). The axial bond length Ca1—O5 [2.381 (1) Å] are somewhat longer than the equatorial ones. The O—Ca—O anlges values are in the range 84.31 (6) to 95.69 (6)°. The coordination geometry of the Ca atom is formed by six O atoms belonging to two methanol molecules and four amide groups. Thus, each Ca atom unites four dimeric Cu complex anionic unit. These Ca—O bonds, together with the intermolecular O—H···O hydrogen bonds between the methanol OH group and oxime O2 atom (Table 2), lead to a three-dimensional framework (Fig. 2).

Related literature top

For the coordination chemistry of tetradentate oxime-and-amide open-chain ligands, see: Duda et al. (1997); Fritsky et al. (1999). For oximes as efficient metal chelators, see: Gumienna-Kontecka et al. (2000); Onindo et al. (1995); Sliva et al. (1997a,b). For the use of oximes in stabilizing high oxidation states of metal ions, see: Fritsky et al. (1998, 2006). For related structures, see: Kanderal et al. (2005); Fritsky (1999); Fritsky et al. (2000); Mokhir et al. (2002); Moroz et al. (2008); Wörl et al. (2005).

Experimental top

A solution of N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (0.244 g, 1 mmol) in 10 ml of methanol was heated to 323 K and added with stirring to a solution of copper(II) chloride dihydrate (0.170 g, 1 mmol) in water (5 ml). Then an aqueous solution of calcium hydrocarbonate (4 ml, 1 M) was added. The obtained mixture was stirred at 323 K for 10 min and then filtered. The filtrate was cooled, filtered and set aside for crystallization at room temperature. The resulting dark-red crystals formed within 12 h were separated by filtration, washed with water and air-dried (yield 78%). N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine was prepared according to the reported procedure (Duda et al., 1997).

Refinement top

O-bonded H atoms were located from a difference Fourier map and refined as riding atoms, with Uiso = 1.5Ueq(O). H atoms of methyl and methylene groups were positioned geometrically and refined as riding atoms, with C—H = 0.99 (methylene) and 0.98 (methyl) Å, and Uiso = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) -x, 2-y, -z; (ii) 1/2-x, 1/2+y, 1/2-z; (iv) -x, 2-y, 1-z; (v) -1/2+x, 3/2-y, 1/2+z.]
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Poly[bis[µ4-N-(2-hydroxyiminopropionyl)-N'-(2-oxidoiminopropionyl)propane-1,3-diaminato]dimethanolcalciumdicopper(II)] top
Crystal data top
[CaCu2(C9H13N4O4)2(CH4O)2]F(000) = 736
Mr = 713.71Dx = 1.755 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3254 reflections
a = 10.0554 (4) Åθ = 1.0–27.5°
b = 8.7794 (3) ŵ = 1.83 mm1
c = 15.4465 (7) ÅT = 120 K
β = 97.882 (2)°Block, dark red
V = 1350.74 (9) Å30.28 × 0.24 × 0.13 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3074 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.035
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ and ω scans with κ offseth = 1113
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1110
Tmin = 0.622, Tmax = 0.796l = 2019
8392 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.0009P]
where P = (Fo2 + 2Fc2)/3
3074 reflections(Δ/σ)max = 0.002
192 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CaCu2(C9H13N4O4)2(CH4O)2]V = 1350.74 (9) Å3
Mr = 713.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.0554 (4) ŵ = 1.83 mm1
b = 8.7794 (3) ÅT = 120 K
c = 15.4465 (7) Å0.28 × 0.24 × 0.13 mm
β = 97.882 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3074 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2573 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.796Rint = 0.035
8392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 1.11 e Å3
3074 reflectionsΔρmin = 0.56 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.07005 (3)0.90813 (3)0.122024 (17)0.01389 (10)
Ca10.00001.00000.50000.01418 (14)
O10.02176 (17)1.23359 (18)0.11376 (10)0.0201 (4)
H1O0.02871.21690.06430.030*
O20.11916 (16)1.14306 (18)0.00651 (10)0.0171 (3)
O30.05881 (17)0.92919 (19)0.35557 (10)0.0213 (4)
O40.38614 (16)0.70750 (19)0.04006 (11)0.0210 (4)
O50.21320 (16)1.12267 (19)0.48180 (11)0.0219 (4)
H5O0.25291.21810.48680.033*
N10.01214 (18)1.0977 (2)0.15866 (12)0.0146 (4)
N20.01537 (19)0.8358 (2)0.23095 (12)0.0173 (4)
N30.1956 (2)0.7474 (2)0.10597 (12)0.0180 (4)
N40.15835 (18)1.0068 (2)0.03093 (12)0.0144 (4)
C10.1226 (3)1.2240 (3)0.27158 (17)0.0288 (6)
H1A0.05701.30630.28430.043*
H1B0.15421.19130.32590.043*
H1C0.19891.26070.23050.043*
C20.0587 (2)1.0934 (3)0.23219 (15)0.0169 (5)
C30.0343 (2)0.9408 (3)0.27836 (15)0.0168 (5)
C40.0562 (3)0.6895 (3)0.27209 (15)0.0225 (5)
H4A0.01090.61090.25050.027*
H4B0.05750.69850.33610.027*
C50.1924 (3)0.6394 (3)0.25333 (17)0.0294 (6)
H5A0.21650.54520.28720.035*
H5B0.25810.71850.27620.035*
C60.2103 (3)0.6087 (3)0.15904 (17)0.0251 (5)
H6A0.30060.56480.15700.030*
H6B0.14290.53290.13400.030*
C70.2839 (2)0.7824 (3)0.05361 (14)0.0163 (5)
C80.2556 (2)0.9315 (3)0.00510 (14)0.0158 (4)
C90.3318 (2)0.9800 (3)0.06579 (15)0.0219 (5)
H9A0.27091.03030.11200.033*
H9B0.37200.89050.08990.033*
H9C0.40281.05110.04230.033*
C100.3241 (2)1.0385 (3)0.43680 (17)0.0251 (5)
H10A0.29030.95030.40760.038*
H10B0.37581.10410.39310.038*
H10C0.38211.00350.47890.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01633 (15)0.01304 (15)0.01304 (14)0.00299 (10)0.00462 (10)0.00150 (10)
Ca10.0144 (3)0.0150 (3)0.0135 (3)0.0026 (2)0.0032 (2)0.0004 (2)
O10.0261 (9)0.0151 (8)0.0197 (8)0.0043 (7)0.0050 (7)0.0032 (7)
O20.0183 (8)0.0135 (7)0.0195 (8)0.0018 (6)0.0021 (6)0.0054 (6)
O30.0271 (9)0.0250 (9)0.0130 (8)0.0030 (7)0.0071 (7)0.0015 (7)
O40.0192 (8)0.0214 (8)0.0231 (8)0.0078 (7)0.0053 (7)0.0014 (7)
O50.0176 (9)0.0183 (8)0.0293 (9)0.0011 (6)0.0012 (7)0.0042 (7)
N10.0148 (9)0.0136 (9)0.0153 (9)0.0007 (7)0.0015 (7)0.0017 (7)
N20.0221 (10)0.0158 (9)0.0146 (9)0.0019 (8)0.0053 (8)0.0026 (8)
N30.0225 (10)0.0155 (9)0.0167 (9)0.0049 (8)0.0057 (8)0.0039 (8)
N40.0139 (9)0.0140 (9)0.0148 (9)0.0009 (7)0.0003 (7)0.0009 (7)
C10.0398 (16)0.0247 (13)0.0239 (13)0.0110 (11)0.0120 (11)0.0002 (11)
C20.0155 (11)0.0186 (11)0.0165 (11)0.0013 (9)0.0020 (9)0.0017 (9)
C30.0148 (11)0.0200 (11)0.0151 (10)0.0021 (9)0.0007 (8)0.0000 (9)
C40.0309 (14)0.0201 (12)0.0175 (11)0.0041 (10)0.0071 (10)0.0046 (10)
C50.0306 (14)0.0299 (14)0.0277 (14)0.0073 (11)0.0043 (11)0.0093 (12)
C60.0306 (14)0.0202 (12)0.0257 (13)0.0113 (10)0.0082 (11)0.0045 (10)
C70.0169 (11)0.0165 (11)0.0146 (10)0.0030 (9)0.0008 (8)0.0016 (9)
C80.0148 (11)0.0186 (11)0.0138 (10)0.0004 (9)0.0010 (8)0.0012 (9)
C90.0195 (12)0.0265 (13)0.0209 (12)0.0005 (10)0.0065 (9)0.0019 (10)
C100.0199 (12)0.0237 (12)0.0304 (13)0.0006 (10)0.0007 (10)0.0041 (11)
Geometric parameters (Å, º) top
Cu1—N11.9751 (18)C1—C21.486 (3)
Cu1—N21.9469 (18)C1—H1A0.9800
Cu1—N31.9320 (19)C1—H1B0.9800
Cu1—N41.9650 (18)C1—H1C0.9800
Cu1—O2i2.4646 (16)C2—C31.522 (3)
Ca1—O32.3134 (16)C4—C51.504 (4)
Ca1—O4ii2.2818 (16)C4—H4A0.9900
Ca1—O52.3811 (16)C4—H4B0.9900
O1—N11.377 (2)C5—C61.516 (4)
O1—H1O0.9852C5—H5A0.9900
O2—N41.363 (2)C5—H5B0.9900
O3—C31.255 (3)C6—H6A0.9900
O4—C71.262 (3)C6—H6B0.9900
O5—C101.436 (3)C7—C81.516 (3)
O5—H5O0.9358C8—C91.482 (3)
N1—C21.287 (3)C9—H9A0.9800
N2—C31.317 (3)C9—H9B0.9800
N2—C41.466 (3)C9—H9C0.9800
N3—C71.316 (3)C10—H10A0.9800
N3—C61.464 (3)C10—H10B0.9800
N4—C81.288 (3)C10—H10C0.9800
N3—Cu1—N298.02 (8)H1B—C1—H1C109.5
N3—Cu1—N482.10 (8)N1—C2—C1124.7 (2)
N2—Cu1—N4166.31 (8)N1—C2—C3112.64 (19)
N3—Cu1—N1163.47 (8)C1—C2—C3122.6 (2)
N2—Cu1—N181.29 (8)O3—C3—N2127.6 (2)
N4—Cu1—N194.69 (8)O3—C3—C2118.5 (2)
N3—Cu1—O2i103.12 (7)N2—C3—C2113.87 (19)
N2—Cu1—O2i106.54 (7)N2—C4—C5112.4 (2)
N4—Cu1—O2i86.66 (6)N2—C4—H4A109.1
N1—Cu1—O2i92.83 (7)C5—C4—H4A109.1
O4iii—Ca1—O4ii180.00 (8)N2—C4—H4B109.1
O4iii—Ca1—O3iv91.40 (6)C5—C4—H4B109.1
O4ii—Ca1—O3iv88.60 (6)H4A—C4—H4B107.9
O4iii—Ca1—O388.60 (6)C4—C5—C6117.9 (2)
O4ii—Ca1—O391.40 (6)C4—C5—H5A107.8
O3iv—Ca1—O3180.0C6—C5—H5A107.8
O4iii—Ca1—O585.18 (6)C4—C5—H5B107.8
O4ii—Ca1—O594.82 (6)C6—C5—H5B107.8
O3iv—Ca1—O595.69 (6)H5A—C5—H5B107.2
O3—Ca1—O584.31 (6)N3—C6—C5112.0 (2)
O4iii—Ca1—O5iv94.82 (6)N3—C6—H6A109.2
O4ii—Ca1—O5iv85.18 (6)C5—C6—H6A109.2
O3iv—Ca1—O5iv84.31 (6)N3—C6—H6B109.2
O3—Ca1—O5iv95.69 (6)C5—C6—H6B109.2
O5—Ca1—O5iv180.0H6A—C6—H6B107.9
N1—O1—H1O104.7O4—C7—N3127.8 (2)
C10—O5—H5O100.9O4—C7—C8118.0 (2)
C2—N1—O1117.47 (18)N3—C7—C8114.15 (19)
C2—N1—Cu1116.42 (15)N4—C8—C9124.9 (2)
O1—N1—Cu1126.09 (14)N4—C8—C7112.86 (19)
C3—N2—C4118.48 (19)C9—C8—C7122.2 (2)
C3—N2—Cu1115.18 (15)C8—C9—H9A109.5
C4—N2—Cu1124.40 (15)C8—C9—H9B109.5
C7—N3—C6120.9 (2)H9A—C9—H9B109.5
C7—N3—Cu1114.57 (15)C8—C9—H9C109.5
C6—N3—Cu1123.60 (15)H9A—C9—H9C109.5
C8—N4—O2120.42 (18)H9B—C9—H9C109.5
C8—N4—Cu1115.63 (15)O5—C10—H10A109.5
O2—N4—Cu1123.91 (13)O5—C10—H10B109.5
C2—C1—H1A109.5H10A—C10—H10B109.5
C2—C1—H1B109.5O5—C10—H10C109.5
H1A—C1—H1B109.5H10A—C10—H10C109.5
C2—C1—H1C109.5H10B—C10—H10C109.5
H1A—C1—H1C109.5
N3—Cu1—N1—C287.3 (3)N2—Cu1—N4—O293.4 (3)
N2—Cu1—N1—C21.52 (17)N1—Cu1—N4—O221.15 (16)
N4—Cu1—N1—C2165.30 (17)O2i—Cu1—N4—O271.42 (16)
O2i—Cu1—N1—C2107.82 (17)Cu1i—Cu1—N4—O250.60 (13)
Cu1i—Cu1—N1—C2150.40 (17)O1—N1—C2—C10.4 (3)
N3—Cu1—N1—O191.4 (3)Cu1—N1—C2—C1179.3 (2)
N2—Cu1—N1—O1179.78 (18)O1—N1—C2—C3176.28 (17)
N4—Cu1—N1—O113.41 (17)Cu1—N1—C2—C32.5 (2)
O2i—Cu1—N1—O173.47 (17)C4—N2—C3—O34.2 (4)
Cu1i—Cu1—N1—O130.90 (16)Cu1—N2—C3—O3169.08 (19)
N3—Cu1—N2—C3157.38 (17)C4—N2—C3—C2173.6 (2)
N4—Cu1—N2—C367.8 (4)Cu1—N2—C3—C28.8 (2)
N1—Cu1—N2—C35.93 (16)N1—C2—C3—O3170.6 (2)
O2i—Cu1—N2—C396.30 (17)C1—C2—C3—O36.2 (3)
Cu1i—Cu1—N2—C365.8 (2)N1—C2—C3—N27.4 (3)
N3—Cu1—N2—C46.4 (2)C1—C2—C3—N2175.8 (2)
N4—Cu1—N2—C496.0 (4)C3—N2—C4—C5133.0 (2)
N1—Cu1—N2—C4169.8 (2)Cu1—N2—C4—C530.3 (3)
O2i—Cu1—N2—C499.87 (19)N2—C4—C5—C662.6 (3)
Cu1i—Cu1—N2—C4130.39 (16)C7—N3—C6—C5132.3 (2)
N2—Cu1—N3—C7159.43 (17)Cu1—N3—C6—C535.9 (3)
N4—Cu1—N3—C76.74 (16)C4—C5—C6—N365.8 (3)
N1—Cu1—N3—C773.0 (3)Ca1v—O4—C7—N357.7 (5)
O2i—Cu1—N3—C791.42 (17)Ca1v—O4—C7—C8122.4 (3)
Cu1i—Cu1—N3—C745.67 (17)C6—N3—C7—O41.4 (4)
N2—Cu1—N3—C69.4 (2)Cu1—N3—C7—O4170.55 (19)
N4—Cu1—N3—C6175.6 (2)C6—N3—C7—C8178.6 (2)
N1—Cu1—N3—C695.8 (3)Cu1—N3—C7—C89.4 (2)
O2i—Cu1—N3—C699.71 (19)O2—N4—C8—C90.9 (3)
Cu1i—Cu1—N3—C6145.46 (18)Cu1—N4—C8—C9176.75 (18)
N3—Cu1—N4—C82.44 (16)O2—N4—C8—C7179.45 (17)
N2—Cu1—N4—C889.0 (4)Cu1—N4—C8—C71.8 (2)
N1—Cu1—N4—C8161.24 (16)O4—C7—C8—N4172.59 (19)
O2i—Cu1—N4—C8106.19 (16)N3—C7—C8—N47.3 (3)
Cu1i—Cu1—N4—C8127.01 (18)O4—C7—C8—C98.9 (3)
N3—Cu1—N4—O2175.17 (17)N3—C7—C8—C9171.2 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x, y+2, z+1; (v) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.991.652.610 (2)165
O5—H5O···O2vi0.941.792.681 (2)159
Symmetry code: (vi) x1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CaCu2(C9H13N4O4)2(CH4O)2]
Mr713.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.0554 (4), 8.7794 (3), 15.4465 (7)
β (°) 97.882 (2)
V3)1350.74 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.28 × 0.24 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.622, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
8392, 3074, 2573
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.04
No. of reflections3074
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.56

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—N11.9751 (18)Cu1—O2i2.4646 (16)
Cu1—N21.9469 (18)Ca1—O32.3134 (16)
Cu1—N31.9320 (19)Ca1—O4ii2.2818 (16)
Cu1—N41.9650 (18)Ca1—O52.3811 (16)
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.991.652.610 (2)165
O5—H5O···O2iii0.941.792.681 (2)159
Symmetry code: (iii) x1/2, y+5/2, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFritsky, I. O. (1999). J. Chem. Soc. Dalton Trans. pp. 825–826.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Karaczyn, A., Kozłowski, H., Głowiak, T. & Prisyazhnaya, E. V. (1999). Z. Naturforsch. Teil B, 54, 456–460.  CAS Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Kapshuk, A. A., Kozłowski, H., Sliva, T. Yu., Gumienna-Kontecka, E., Prisyazhnaya, E. V. & Iskenderov, T. S. (2000). Z. Naturforsch. Teil B, 55, 966–970.  CAS Google Scholar
First citationGumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208.  Web of Science CrossRef Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1139-m1140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds