organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Methyl­enedi-p-phenyl­ene)dibenzamide

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, bDirectorate of Chemical & Power Sources, National Development Complex, PO Box 2216, Islamabad, Pakistan, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com

(Received 30 July 2009; accepted 7 August 2009; online 12 August 2009)

The title compound, C27H22N2O2, consists of two chemically equivalent halves. However, it displays no crystallographic symmetry, only an approximate local twofold symmetry (r.m.s. deviation = 0.15 Å between the two halves of the molecule) is observed. In the crystal, mol­ecules are connected by two anti­parallel classical N—H⋯O hydrogen bonds, forming broad chains parallel to (10[\overline{1}]). A series of weak C—H⋯N/O hydrogen bonds is also present.

Related literature

For general background to the chemistry of polymers and polyamides, see Ataei et al. (2005[Ataei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491-499.]); Yang et al. (2002[Yang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245-250.]). For related structures, see: Im & Jung (2000[Im, J. K. & Jung, J. C. (2000). Polymers, 41, 8709-8716.]).

[Scheme 1]

Experimental

Crystal data
  • C27H22N2O2

  • Mr = 406.47

  • Triclinic, [P \overline 1]

  • a = 5.7296 (7) Å

  • b = 9.601 (1) Å

  • c = 20.045 (2) Å

  • α = 88.517 (8)°

  • β = 82.293 (8)°

  • γ = 75.67 (1)°

  • V = 1058.7 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.781, Tmax = 1.000 (expected range = 0.762–0.975)

  • 14884 measured reflections

  • 4355 independent reflections

  • 3819 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.07

  • 4355 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O2i 0.875 (17) 2.017 (17) 2.8745 (13) 166.3 (14)
N2—H02⋯O1ii 0.876 (16) 2.088 (16) 2.9358 (12) 162.7 (14)
C16—H16⋯O2i 0.95 2.60 3.3090 (14) 132
C35—H35⋯N1i 0.95 2.72 3.5459 (15) 146
C33—H33⋯O1ii 0.95 2.43 3.1913 (15) 137
C42—H42⋯O1ii 0.95 2.58 3.3003 (14) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

High-temperature polymers have received much attention because of increasing demands for the replacement of ceramics and metals (Ataei et al., 2005). However, in many cases they are insoluble and do not melt below their decomposition temperature, which restricts their applications (Im & Jung, 2000). Many studies have therefore focused on obtaining aromatic polymers that are processable by conventional techniques (Yang et al., 2002). The title compound is a logical precursor for an attempt to synthesize polyamides and polyimides having excellent thermal and mechanical properties.

The molecule of the title compound is shown in Fig. 1. Molecular dimensions may be regarded as normal, as may the trans geometry at the amide groups. The molecule possesses no crystallographic symmetry, but displays approximate twofold symmetry with a r.m.s. deviation of 0.15 Å between the two halves of the molecule. There are however significant differences between torsion angles of chemically equivalent amide groups, e.g. C1—N1—C24—C25 - 31.5 (2) versus. C3—N2—C34—C35 - 16.2 (2)°. The outer pairs of rings are approximately parallel [interplanar angles: C11–16/C21–26 2.91 (7), C31–36/C41–46 10.72 (6)°] whereas the central pair of rings are approximately perpendicular [C21–26/C31–36 84.02 (4)°].

The main features of the molecular packing are the classical H bonds of the N—H···OC type, which are mutually antiparallel and link the molecules to form broad chains parallel to (101) (Fig. 2, Table 1). A series of narrow-angled (C—H···N/O 132–146°) weak H bonds are probably of less structural significance (Table 1).

Related literature top

For general background to the chemistry of polymers and polyamides, see Ataei et al. (2005); Yang et al. (2002). For related structures, see: Im & Jung (2000).

Experimental top

All reagents and organic solvents were of analytical grade and commercially available. The title compound was accidentally generated during the reaction of 4,4'- diaminodiphenylmethane with 2-thiophene-carbonyl chloride; it was isolated from the reaction mixture by column chromatography in 30% yield and then purified by recrystallization from ethanol. Colourless single crystals suitable for X-ray analysis were obtained after one week by slow evaporation from an ethanolic solution. Crystals formed as thin plates or somewhat thicker laths; both proved to have the same cell constants.

Refinement top

NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—Harom 0.95 Å, C—Hmethylene 0.99 Å; these hydrogen U values were fixed at 1.2 × U(eq) of the parent atom. Data are 99.6% complete to 2θ 145°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (50% probability level) of the title compound.
[Figure 2] Fig. 2. Packing diagram viewed parpendicular to (101). Classical H bonds are indicated by thick dashed lines. H atoms not involved in these H bonds are omitted for clarity.
N,N'-(Methylenedi-p-phenylene)dibenzamide top
Crystal data top
C27H22N2O2F(000) = 428
Mr = 406.47Dx = 1.275 Mg m3
Triclinic, P1Melting point: 449 K
a = 5.7296 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.601 (1) ÅCell parameters from 10160 reflections
c = 20.045 (2) Åθ = 3.3–75.8°
α = 88.517 (8)°µ = 0.64 mm1
β = 82.293 (8)°T = 100 K
γ = 75.67 (1)°Lath, colourless
V = 1058.7 (2) Å30.20 × 0.10 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
4355 independent reflections
Radiation source: Nova (Cu) X-ray Source3819 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.3543 pixels mm-1θmax = 76.0°, θmin = 4.5°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1210
Tmin = 0.781, Tmax = 1.000l = 2524
14884 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.2168P]
where P = (Fo2 + 2Fc2)/3
4355 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H22N2O2γ = 75.67 (1)°
Mr = 406.47V = 1058.7 (2) Å3
Triclinic, P1Z = 2
a = 5.7296 (7) ÅCu Kα radiation
b = 9.601 (1) ŵ = 0.64 mm1
c = 20.045 (2) ÅT = 100 K
α = 88.517 (8)°0.20 × 0.10 × 0.04 mm
β = 82.293 (8)°
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
4355 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3819 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 1.000Rint = 0.026
14884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.16 e Å3
4355 reflectionsΔρmin = 0.18 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.5047 (0.0026) x + 7.1432 (0.0034) y + 2.4159 (0.0097) z = 0.1119 (0.0034)

* -0.0003 (0.0008) C11 * -0.0057 (0.0008) C12 * 0.0066 (0.0009) C13 * -0.0015 (0.0009) C14 * -0.0045 (0.0008) C15 * 0.0054 (0.0008) C16 - 0.0844 (0.0017) C1 - 0.5968 (0.0020) O1 0.4205 (0.0020) N1

Rms deviation of fitted atoms = 0.0046

- 2.3282 (0.0026) x + 7.4133 (0.0033) y + 1.8134 (0.0088) z = 0.5814 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 2.91 (0.07)

* -0.0079 (0.0008) C21 * 0.0076 (0.0008) C22 * 0.0009 (0.0008) C23 * -0.0090 (0.0008) C24 * 0.0085 (0.0008) C25 * -0.0001 (0.0008) C26 0.0290 (0.0016) N1 - 0.0695 (0.0019) C2

Rms deviation of fitted atoms = 0.0067

3.4319 (0.0022) x + 3.8138 (0.0049) y + 16.6363 (0.0061) z = 13.6255 (0.0031)

Angle to previous plane (with approximate e.s.d.) = 84.02 (0.04)

* 0.0014 (0.0008) C31 * -0.0008 (0.0009) C32 * -0.0014 (0.0009) C33 * 0.0030 (0.0008) C34 * -0.0024 (0.0008) C35 * 0.0002 (0.0008) C36 - 0.0109 (0.0016) N2 0.0150 (0.0018) C2

Rms deviation of fitted atoms = 0.0018

2.8287 (0.0024) x + 4.9963 (0.0040) y + 16.4884 (0.0060) z = 14.1826 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 10.72 (0.06)

* -0.0120 (0.0008) C41 * 0.0057 (0.0008) C42 * 0.0049 (0.0008) C43 * -0.0092 (0.0008) C44 * 0.0029 (0.0008) C45 * 0.0078 (0.0008) C46 - 0.0326 (0.0017) C3 0.3984 (0.0019) O2 - 0.5360 (0.0020) N2

Rms deviation of fitted atoms = 0.0077

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76324 (16)0.11312 (8)0.25609 (4)0.0293 (2)
O20.05166 (15)0.43352 (8)0.76182 (4)0.02817 (19)
N10.91641 (18)0.30294 (10)0.27475 (5)0.0241 (2)
H010.958 (3)0.3787 (17)0.2567 (8)0.034 (4)*
N20.15925 (18)0.20072 (10)0.73950 (5)0.0237 (2)
H020.156 (3)0.1111 (18)0.7476 (8)0.033 (4)*
C10.8376 (2)0.21803 (11)0.23510 (6)0.0234 (2)
C20.9989 (2)0.24643 (14)0.55736 (6)0.0294 (3)
H2A1.12960.15910.56250.035*
H2B1.05460.32980.57120.035*
C30.0255 (2)0.30332 (11)0.77064 (5)0.0231 (2)
C110.8434 (2)0.25660 (11)0.16191 (6)0.0239 (2)
C120.6816 (2)0.21104 (13)0.12666 (6)0.0291 (3)
H120.56950.16230.14970.035*
C130.6834 (2)0.23651 (14)0.05825 (6)0.0340 (3)
H130.57050.20680.03470.041*
C140.8497 (2)0.30526 (13)0.02406 (6)0.0330 (3)
H140.85220.32160.02290.040*
C151.0122 (2)0.35010 (12)0.05876 (6)0.0297 (3)
H151.12650.39680.03540.036*
C161.0087 (2)0.32696 (12)0.12763 (6)0.0255 (2)
H161.11890.35910.15130.031*
C210.9656 (2)0.26234 (12)0.48346 (6)0.0245 (2)
C221.1219 (2)0.32417 (13)0.44001 (6)0.0275 (2)
H221.24210.35970.45770.033*
C231.1061 (2)0.33505 (12)0.37156 (6)0.0270 (2)
H231.21570.37680.34280.032*
C240.9296 (2)0.28478 (11)0.34494 (5)0.0228 (2)
C250.7677 (2)0.22582 (12)0.38770 (6)0.0249 (2)
H250.64380.19360.37030.030*
C260.7884 (2)0.21443 (12)0.45618 (6)0.0260 (2)
H260.67870.17290.48500.031*
C310.7762 (2)0.23612 (13)0.60485 (5)0.0257 (2)
C320.7603 (2)0.10857 (14)0.63724 (7)0.0333 (3)
H320.89190.02590.62900.040*
C330.5569 (2)0.09899 (13)0.68137 (6)0.0314 (3)
H330.55040.01040.70280.038*
C340.3625 (2)0.21848 (12)0.69433 (5)0.0227 (2)
C350.3748 (2)0.34678 (12)0.66207 (6)0.0279 (2)
H350.24280.42930.67010.033*
C360.5802 (2)0.35433 (12)0.61812 (6)0.0282 (3)
H360.58670.44280.59660.034*
C410.2063 (2)0.24956 (11)0.81921 (5)0.0230 (2)
C420.1489 (2)0.11654 (12)0.85073 (6)0.0258 (2)
H420.01120.05670.84220.031*
C430.3239 (2)0.07097 (12)0.89452 (6)0.0285 (3)
H430.28340.01990.91570.034*
C440.5577 (2)0.15796 (13)0.90741 (6)0.0289 (3)
H440.67830.12610.93670.035*
C450.6148 (2)0.29195 (13)0.87733 (6)0.0292 (3)
H450.77410.35240.88670.035*
C460.4400 (2)0.33797 (12)0.83371 (6)0.0266 (2)
H460.47990.43010.81360.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (5)0.0230 (4)0.0258 (4)0.0147 (3)0.0015 (3)0.0001 (3)
O20.0323 (4)0.0205 (4)0.0313 (4)0.0085 (3)0.0007 (3)0.0014 (3)
N10.0306 (5)0.0204 (4)0.0223 (5)0.0097 (4)0.0008 (4)0.0027 (3)
N20.0295 (5)0.0189 (4)0.0236 (5)0.0094 (4)0.0005 (4)0.0019 (3)
C10.0245 (5)0.0195 (5)0.0247 (5)0.0049 (4)0.0012 (4)0.0004 (4)
C20.0259 (6)0.0382 (6)0.0256 (6)0.0111 (5)0.0035 (4)0.0054 (5)
C30.0277 (6)0.0213 (5)0.0219 (5)0.0082 (4)0.0046 (4)0.0006 (4)
C110.0269 (5)0.0187 (5)0.0242 (5)0.0038 (4)0.0001 (4)0.0004 (4)
C120.0298 (6)0.0295 (6)0.0285 (6)0.0095 (5)0.0011 (5)0.0003 (4)
C130.0358 (7)0.0386 (7)0.0290 (6)0.0099 (5)0.0076 (5)0.0012 (5)
C140.0412 (7)0.0324 (6)0.0230 (6)0.0058 (5)0.0026 (5)0.0014 (5)
C150.0350 (6)0.0254 (5)0.0267 (6)0.0071 (5)0.0024 (5)0.0027 (4)
C160.0278 (6)0.0219 (5)0.0261 (6)0.0058 (4)0.0016 (4)0.0003 (4)
C210.0235 (5)0.0238 (5)0.0245 (5)0.0038 (4)0.0010 (4)0.0020 (4)
C220.0258 (6)0.0308 (6)0.0283 (6)0.0114 (5)0.0043 (4)0.0042 (4)
C230.0275 (6)0.0281 (6)0.0266 (6)0.0114 (5)0.0001 (4)0.0052 (4)
C240.0258 (5)0.0177 (5)0.0231 (5)0.0032 (4)0.0011 (4)0.0013 (4)
C250.0242 (5)0.0258 (5)0.0251 (5)0.0081 (4)0.0005 (4)0.0007 (4)
C260.0251 (5)0.0274 (5)0.0251 (5)0.0091 (4)0.0028 (4)0.0017 (4)
C310.0283 (6)0.0318 (6)0.0196 (5)0.0119 (5)0.0039 (4)0.0028 (4)
C320.0309 (6)0.0291 (6)0.0348 (6)0.0025 (5)0.0030 (5)0.0057 (5)
C330.0356 (7)0.0234 (5)0.0332 (6)0.0075 (5)0.0016 (5)0.0071 (4)
C340.0267 (5)0.0235 (5)0.0197 (5)0.0100 (4)0.0019 (4)0.0006 (4)
C350.0335 (6)0.0230 (5)0.0259 (6)0.0074 (4)0.0010 (5)0.0006 (4)
C360.0376 (6)0.0238 (5)0.0246 (5)0.0125 (5)0.0009 (5)0.0027 (4)
C410.0273 (6)0.0222 (5)0.0211 (5)0.0090 (4)0.0032 (4)0.0015 (4)
C420.0286 (6)0.0231 (5)0.0248 (5)0.0065 (4)0.0005 (4)0.0005 (4)
C430.0354 (6)0.0236 (5)0.0264 (6)0.0095 (5)0.0000 (5)0.0022 (4)
C440.0305 (6)0.0332 (6)0.0251 (6)0.0142 (5)0.0018 (5)0.0017 (5)
C450.0254 (6)0.0319 (6)0.0293 (6)0.0060 (5)0.0016 (5)0.0020 (5)
C460.0299 (6)0.0244 (5)0.0253 (5)0.0065 (4)0.0037 (4)0.0009 (4)
Geometric parameters (Å, º) top
O1—C11.2310 (14)C41—C461.3941 (16)
O2—C31.2325 (14)C41—C421.3945 (16)
N1—C11.3462 (15)C42—C431.3888 (16)
N1—C241.4230 (14)C43—C441.3868 (17)
N2—C31.3485 (15)C44—C451.3891 (17)
N2—C341.4188 (14)C45—C461.3880 (17)
C1—C111.5018 (15)N1—H010.875 (17)
C2—C311.5086 (16)N2—H020.876 (16)
C2—C211.5180 (15)C2—H2A0.9900
C3—C411.5021 (15)C2—H2B0.9900
C11—C121.3937 (17)C12—H120.9500
C11—C161.3943 (16)C13—H130.9500
C12—C131.3858 (17)C14—H140.9500
C13—C141.3878 (19)C15—H150.9500
C14—C151.3872 (18)C16—H160.9500
C15—C161.3908 (16)C22—H220.9500
C21—C261.3907 (16)C23—H230.9500
C21—C221.3933 (16)C25—H250.9500
C22—C231.3866 (16)C26—H260.9500
C23—C241.3932 (16)C32—H320.9500
C24—C251.3918 (15)C33—H330.9500
C25—C261.3928 (16)C35—H350.9500
C31—C361.3874 (17)C36—H360.9500
C31—C321.3884 (17)C42—H420.9500
C32—C331.3861 (17)C43—H430.9500
C33—C341.3889 (17)C44—H440.9500
C34—C351.3892 (16)C45—H450.9500
C35—C361.3882 (17)C46—H460.9500
C1—N1—C24125.97 (9)C1—N1—H01118.0 (10)
C3—N2—C34128.27 (9)C24—N1—H01116.0 (10)
O1—C1—N1123.28 (11)C3—N2—H02117.2 (10)
O1—C1—C11119.98 (10)C34—N2—H02114.5 (10)
N1—C1—C11116.74 (9)C31—C2—H2A108.4
C31—C2—C21115.57 (10)C21—C2—H2A108.4
O2—C3—N2124.60 (10)C31—C2—H2B108.4
O2—C3—C41119.96 (10)C21—C2—H2B108.4
N2—C3—C41115.44 (9)H2A—C2—H2B107.4
C12—C11—C16119.42 (11)C13—C12—H12119.8
C12—C11—C1116.81 (10)C11—C12—H12119.8
C16—C11—C1123.66 (10)C12—C13—H13119.9
C13—C12—C11120.35 (11)C14—C13—H13119.9
C12—C13—C14120.16 (12)C15—C14—H14120.1
C15—C14—C13119.78 (11)C13—C14—H14120.1
C14—C15—C16120.33 (11)C14—C15—H15119.8
C15—C16—C11119.94 (11)C16—C15—H15119.8
C26—C21—C22117.76 (10)C15—C16—H16120.0
C26—C21—C2122.95 (10)C11—C16—H16120.0
C22—C21—C2119.26 (10)C23—C22—H22119.3
C23—C22—C21121.45 (11)C21—C22—H22119.3
C22—C23—C24120.02 (10)C22—C23—H23120.0
C25—C24—C23119.47 (10)C24—C23—H23120.0
C25—C24—N1122.82 (10)C24—C25—H25120.2
C23—C24—N1117.64 (10)C26—C25—H25120.2
C24—C25—C26119.59 (10)C21—C26—H26119.2
C21—C26—C25121.68 (10)C25—C26—H26119.2
C36—C31—C32117.52 (11)C33—C32—H32119.2
C36—C31—C2121.11 (11)C31—C32—H32119.2
C32—C31—C2121.37 (11)C32—C33—H33119.9
C33—C32—C31121.54 (11)C34—C33—H33119.9
C32—C33—C34120.24 (11)C36—C35—H35120.0
C33—C34—C35118.99 (11)C34—C35—H35120.0
C33—C34—N2117.27 (10)C31—C36—H36119.1
C35—C34—N2123.72 (10)C35—C36—H36119.1
C36—C35—C34119.93 (11)C43—C42—H42119.8
C31—C36—C35121.77 (11)C41—C42—H42119.8
C46—C41—C42119.09 (10)C44—C43—H43119.9
C46—C41—C3118.15 (10)C42—C43—H43119.9
C42—C41—C3122.75 (10)C43—C44—H44120.1
C43—C42—C41120.47 (11)C45—C44—H44120.1
C44—C43—C42120.11 (11)C46—C45—H45119.9
C43—C44—C45119.71 (11)C44—C45—H45119.9
C46—C45—C44120.30 (11)C45—C46—H46119.9
C45—C46—C41120.28 (11)C41—C46—H46119.9
C24—N1—C1—O10.93 (18)C2—C21—C26—C25177.65 (10)
C24—N1—C1—C11179.06 (10)C24—C25—C26—C210.86 (17)
C34—N2—C3—O23.43 (18)C21—C2—C31—C3670.56 (14)
C34—N2—C3—C41176.26 (10)C21—C2—C31—C32109.90 (13)
O1—C1—C11—C1224.81 (15)C36—C31—C32—C330.13 (19)
N1—C1—C11—C12155.20 (11)C2—C31—C32—C33179.42 (12)
O1—C1—C11—C16151.47 (11)C31—C32—C33—C340.1 (2)
N1—C1—C11—C1628.53 (15)C32—C33—C34—C350.48 (19)
C16—C11—C12—C130.57 (17)C32—C33—C34—N2179.41 (11)
C1—C11—C12—C13177.01 (10)C3—N2—C34—C33164.96 (11)
C11—C12—C13—C141.23 (19)C3—N2—C34—C3516.17 (18)
C12—C13—C14—C150.82 (19)C33—C34—C35—C360.58 (17)
C13—C14—C15—C160.24 (18)N2—C34—C35—C36179.43 (10)
C14—C15—C16—C110.89 (17)C32—C31—C36—C350.03 (18)
C12—C11—C16—C150.49 (16)C2—C31—C36—C35179.52 (11)
C1—C11—C16—C15175.69 (10)C34—C35—C36—C310.32 (18)
C31—C2—C21—C2625.19 (16)O2—C3—C41—C4623.81 (15)
C31—C2—C21—C22156.51 (11)N2—C3—C41—C46156.49 (10)
C26—C21—C22—C231.41 (17)O2—C3—C41—C42155.33 (11)
C2—C21—C22—C23176.98 (11)N2—C3—C41—C4224.37 (15)
C21—C22—C23—C240.60 (18)C46—C41—C42—C431.81 (16)
C22—C23—C24—C250.97 (17)C3—C41—C42—C43179.06 (10)
C22—C23—C24—N1177.98 (10)C41—C42—C43—C440.21 (17)
C1—N1—C24—C2531.50 (17)C42—C43—C44—C451.20 (18)
C1—N1—C24—C23151.60 (11)C43—C44—C45—C461.01 (18)
C23—C24—C25—C261.68 (16)C44—C45—C46—C410.60 (17)
N1—C24—C25—C26178.53 (10)C42—C41—C46—C452.00 (16)
C22—C21—C26—C250.67 (17)C3—C41—C46—C45178.83 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O2i0.875 (17)2.017 (17)2.8745 (13)166.3 (14)
N2—H02···O1ii0.876 (16)2.088 (16)2.9358 (12)162.7 (14)
C16—H16···O2i0.952.603.3090 (14)132
C35—H35···N1i0.952.723.5459 (15)146
C33—H33···O1ii0.952.433.1913 (15)137
C42—H42···O1ii0.952.583.3003 (14)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H22N2O2
Mr406.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7296 (7), 9.601 (1), 20.045 (2)
α, β, γ (°)88.517 (8), 82.293 (8), 75.67 (1)
V3)1058.7 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Nova A
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.781, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14884, 4355, 3819
Rint0.026
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.07
No. of reflections4355
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O2i0.875 (17)2.017 (17)2.8745 (13)166.3 (14)
N2—H02···O1ii0.876 (16)2.088 (16)2.9358 (12)162.7 (14)
C16—H16···O2i0.952.603.3090 (14)131.6
C35—H35···N1i0.952.723.5459 (15)146.2
C33—H33···O1ii0.952.433.1913 (15)136.6
C42—H42···O1ii0.952.583.3003 (14)133.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University and National Development complex, Islamabad, Pakistan for the allocation of research and analytical laboratory facilities.

References

First citationAtaei, S. M., Sarrafi, Y., Hatami, M. & Faizi, L. A. (2005). Eur. Polym. J. 41, 491–499.  Web of Science CrossRef Google Scholar
First citationIm, J. K. & Jung, J. C. (2000). Polymers, 41, 8709–8716.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, C.-P., Chen, R.-S. & Hsu, M.-F. (2002). J. Polym. Res. 9, 245–250.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds