supplementary materials


Acta Cryst. (2009). E65, o2244    [ doi:10.1107/S1600536809033297 ]

4-Methylbenzaldehyde thiosemicarbazone

J. Zhang, H. Geng, L. Zhuang and G. Wang

Abstract top

The title compound, C9H11N3S, was prepared by reacting 4-methylbenzaldehyde with thiosemicarbazide. An intramolecular N-H...N hydrogen bond helps to establish the observed molecular conformation. The crystal packing is realized by intermolecular N-H...S hydrogen bonds.

Comment top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their ability to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of the parent aldehyde or ketone moiety (Chimenti et al., 2007). Schiff bases in general show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and have therefore envisaged biochemical and pharmacological applications. We are focusing our synthetic and structural studies on new products of thiazole Schiff bases from thiosemicarbazones (Zhang et al., 2009). We herein report the crystal structure of the title compound (I).

The atom-numbering scheme of (I) is shown in Fig.1, and all bond lengths are within normal ranges (Allen et al., 1987).

The sulfur atom and the hydrazine nitrogen N1 are in trans position with respect to the C9–N2 bond. The molecular conformation is determined by a strong intramolecular hydrogen bond N3–H3A···N1(2.641 (3) A°).

The planar phenyl ring A (C2/C3/C4/C5/C6/C7, r.m.s. deviation 0.0115 (1) Å) and the pseudo five-membered ring B(N1/N2/C9/N3/H3A, r.m.s. deviation 0.035 (1) Å that is formed by the N3—H3A···N1 hydrogen bond enclose a dihedral angle of 14 (1)°. The dihedral angle between the thiourea group (N1/N2/C9/S) and the phenyl ring measures to 17 (2)°.

The crystal packing is realized by intermolecular N—H···S hydrogen bonds (Table 1, Fig. 1 and Fig.2).

Related literature top

For general background to thiosemicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Ferrari et al. (2000); Deschamps et al. (2003); Maccioni et al.(2003); Chimenti et al. (2007); Zhang et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-methyl-benzaldehyde (1.20 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. After cooling, the precipitated solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate at room temperature. 1H NMR (DMSO, δ, p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s,2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t,1 H), 1.79 (t, 3 H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.86 °, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. The intramolecular hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of (I). Hydrogen bonds are drawn as dashed lines.
4-Methylbenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3SF(000) = 408
Mr = 193.27Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 13.234 (3) Åθ = 1–25°
b = 8.221 (2) ŵ = 0.27 mm1
c = 10.311 (2) ÅT = 293 K
β = 111.15 (3)°Block, colorless
V = 1046.2 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
graphiteθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 150
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.924, Tmax = 0.974l = 1112
1982 measured reflections3 standard reflections every 200 reflections
1898 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.07P)2 + 0.38P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1898 reflectionsΔρmax = 0.26 e Å3
120 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (4)
Crystal data top
C9H11N3SV = 1046.2 (4) Å3
Mr = 193.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.234 (3) ŵ = 0.27 mm1
b = 8.221 (2) ÅT = 293 K
c = 10.311 (2) Å0.30 × 0.20 × 0.10 mm
β = 111.15 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.924, Tmax = 0.974θmax = 25.3°
1982 measured reflections3 standard reflections every 200 reflections
1898 independent reflections intensity decay: 9%
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146Δρmax = 0.26 e Å3
S = 1.00Δρmin = 0.20 e Å3
1898 reflectionsAbsolute structure: ?
120 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.48277 (7)0.09017 (9)0.81196 (7)0.0534 (3)
N10.34064 (18)0.0455 (3)0.4236 (2)0.0438 (6)
C10.0005 (3)0.2600 (6)0.1894 (3)0.0788 (12)
H1B0.03740.36140.19340.118*
H1C0.03240.25930.25850.118*
H1D0.05140.17210.20670.118*
N20.40264 (19)0.0458 (3)0.5647 (2)0.0456 (6)
H2A0.42750.13580.60650.055*
C20.0863 (3)0.2397 (5)0.0467 (3)0.0560 (9)
N30.3955 (2)0.2299 (3)0.5633 (3)0.0630 (8)
H3A0.36500.22630.47430.076*
H3B0.40780.32220.60540.076*
C30.1264 (3)0.0877 (4)0.0043 (3)0.0614 (9)
H3C0.10060.00340.05130.074*
C40.2041 (3)0.0681 (4)0.1365 (3)0.0553 (8)
H4A0.23020.03520.16780.066*
C50.2429 (2)0.2018 (4)0.2222 (3)0.0445 (7)
C60.2060 (2)0.3553 (4)0.1705 (3)0.0521 (8)
H6A0.23290.44650.22550.063*
C70.1289 (3)0.3741 (4)0.0370 (3)0.0565 (9)
H7A0.10560.47790.00360.068*
C80.3157 (2)0.1842 (4)0.3664 (3)0.0452 (7)
H8A0.34460.27700.41800.054*
C90.4235 (2)0.0939 (3)0.6353 (3)0.0420 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0798 (6)0.0472 (5)0.0282 (4)0.0056 (4)0.0134 (4)0.0039 (3)
N10.0512 (15)0.0501 (15)0.0282 (11)0.0033 (11)0.0121 (10)0.0016 (10)
C10.071 (2)0.116 (3)0.0399 (18)0.014 (2)0.0086 (17)0.015 (2)
N20.0603 (16)0.0443 (14)0.0268 (11)0.0011 (12)0.0094 (11)0.0010 (10)
C20.0497 (19)0.081 (2)0.0362 (16)0.0065 (17)0.0143 (14)0.0080 (16)
N30.100 (2)0.0425 (15)0.0339 (13)0.0016 (14)0.0082 (14)0.0005 (11)
C30.068 (2)0.067 (2)0.0419 (17)0.0007 (18)0.0119 (16)0.0070 (16)
C40.064 (2)0.055 (2)0.0386 (16)0.0061 (16)0.0082 (14)0.0039 (14)
C50.0452 (17)0.0530 (18)0.0342 (14)0.0006 (14)0.0131 (12)0.0056 (13)
C60.0556 (19)0.0562 (19)0.0423 (17)0.0015 (15)0.0151 (14)0.0060 (15)
C70.057 (2)0.066 (2)0.0451 (17)0.0113 (16)0.0169 (15)0.0190 (16)
C80.0516 (18)0.0476 (18)0.0332 (14)0.0002 (14)0.0115 (13)0.0019 (13)
C90.0492 (17)0.0438 (16)0.0320 (14)0.0015 (13)0.0135 (12)0.0018 (13)
Geometric parameters (Å, °) top
S—C91.704 (3)N3—H3A0.8600
N1—C81.271 (4)N3—H3B0.8600
N1—N21.389 (3)C3—C41.390 (4)
C1—C21.514 (4)C3—H3C0.9300
C1—H1B0.9600C4—C51.387 (4)
C1—H1C0.9600C4—H4A0.9300
C1—H1D0.9600C5—C61.388 (4)
N2—C91.334 (3)C5—C81.458 (4)
N2—H2A0.8600C6—C71.395 (4)
C2—C31.385 (5)C6—H6A0.9300
C2—C71.390 (5)C7—H7A0.9300
N3—C91.319 (3)C8—H8A0.9300
C8—N1—N2116.1 (2)C5—C4—C3120.4 (3)
C2—C1—H1B109.5C5—C4—H4A119.8
C2—C1—H1C109.5C3—C4—H4A119.8
H1B—C1—H1C109.5C4—C5—C6118.5 (3)
C2—C1—H1D109.5C4—C5—C8121.9 (3)
H1B—C1—H1D109.5C6—C5—C8119.5 (3)
H1C—C1—H1D109.5C5—C6—C7120.7 (3)
C9—N2—N1119.9 (2)C5—C6—H6A119.7
C9—N2—H2A120.1C7—C6—H6A119.7
N1—N2—H2A120.1C2—C7—C6120.8 (3)
C3—C2—C7117.9 (3)C2—C7—H7A119.6
C3—C2—C1121.4 (3)C6—C7—H7A119.6
C7—C2—C1120.8 (3)N1—C8—C5121.8 (3)
C9—N3—H3A120.0N1—C8—H8A119.1
C9—N3—H3B120.0C5—C8—H8A119.1
H3A—N3—H3B120.0N3—C9—N2117.5 (2)
C2—C3—C4121.6 (3)N3—C9—S123.0 (2)
C2—C3—H3C119.2N2—C9—S119.5 (2)
C4—C3—H3C119.2
C8—N1—N2—C9173.6 (3)C3—C2—C7—C62.8 (5)
C7—C2—C3—C42.1 (5)C1—C2—C7—C6177.7 (3)
C1—C2—C3—C4178.4 (3)C5—C6—C7—C20.8 (5)
C2—C3—C4—C50.7 (5)N2—N1—C8—C5174.4 (2)
C3—C4—C5—C62.8 (5)C4—C5—C8—N15.3 (5)
C3—C4—C5—C8173.4 (3)C6—C5—C8—N1170.9 (3)
C4—C5—C6—C72.0 (5)N1—N2—C9—N38.5 (4)
C8—C5—C6—C7174.2 (3)N1—N2—C9—S170.71 (19)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.292.641 (4)105
N2—H2A···Si0.862.543.389 (3)168
N3—H3B···Sii0.862.613.395 (3)153
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.292.641 (4)105
N2—H2A···Si0.862.543.389 (3)168
N3—H3B···Sii0.862.613.395 (3)153
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2.
Acknowledgements top

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.

Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712.

Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.

Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.

Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.

Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884.