metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methoxo-κO)oxidobis(quinolin-8-olato-κ2N,O)vanadium(V)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bResearch Center of Medical Chemistry & Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 20 July 2009; accepted 11 August 2009; online 15 August 2009)

In the title complex, [V(C9H6NO)2(CH3O)O], the central VV atom is coordinated by the O atoms from the oxido and methoxo ligands and the N and O atoms of two bis-chelating quinolin-8-olate ligands, forming a distorted octa­hedral environment. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect mol­ecules into centrosymmetric dimers which are, in turn, linked by weak C—H⋯π inter­actions into chains along the b axis.

Related literature

For the properties of vanadium compounds, see: Crans et al. (2004[Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev. 104, 849-902.]); Diego et al. (2003[Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813-1820.]); Thompson & Orvig (2006[Thompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761-764.]). For the structures of oxidovandium complexes see: Hoshina et al. (1998[Hoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishida, H. & Kojima, M. (1998). Inorg. Chem. 37, 142-145.]); Otieno et al. (1996[Otieno, T., Bond, M. R., Mokry, L. M., Walter, R. B. & Carrano, C. J. (1996). J. Chem. Soc. Chem. Commun. pp. 37-38.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C9H6NO)2(CH3O)O]

  • Mr = 386.27

  • Monoclinic, P 21 /c

  • a = 14.0405 (16) Å

  • b = 8.0019 (1) Å

  • c = 15.5920 (18) Å

  • β = 110.560 (1)°

  • V = 1640.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 298 K

  • 0.44 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 0.900

  • 7660 measured reflections

  • 2893 independent reflections

  • 1378 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.230

  • S = 1.00

  • 2893 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond angles (°)

O3—V1—O2 101.9 (2)
O3—V1—O1 91.4 (2)
O2—V1—O1 156.3 (2)
O3—V1—N1 164.3 (2)
O2—V1—N1 85.35 (19)
O1—V1—N1 77.40 (19)
O4—V1—N2 170.1 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O4i 0.93 2.54 3.355 (8) 146
C19—H19BCgii 0.96 2.84 3.520 (9) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z. Cg is the centroid of the N2/C10–C14 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Vanadium is a biologically essential trace element, encountered in metalloenzymes such as haloperoxidases or nitrogenases. Its coordination chemistry has received increasing attention due to the fact that vanadium compounds in various oxidation states have insulin-mimetic properties (Diego et al., 2003; Crans et al., 2004; Thompson & Orvig, 2006). We report here the synthesis and crystal structure of the title complex.

In the molecular structure (Fig.1.), the central VV atom is six-coordinated by the O atoms of the oxo and methoxo ligands and the N atoms and O atoms of two 8-hydroxyquinolato ligands, forming a distorted octahedral environment (Table 1). The V=O bond distance is 1.602 (4) Å which is typical for oxovandium complexes (Hoshina et al., 1998; Otieno et al., 1996). The mean planes of the chelated rings defined by N1/C5—C6/O1/V1 and N2/C14—C15/O2/V1 form a dihedral angle of 82.02 (18)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2) which are, in turn, linked by weak C—H···π interactions into chains along the b axis.

Related literature top

For the properties of vanadium compounds, see: Crans et al. (2004); Diego et al. (2003); Thompson & Orvig (2006). For the structures of oxovandium complexes see: Hoshina et al. (1998); Otieno et al. (1996). Cg is the centroid of the N2/C10–C14 ring.

Experimental top

8-Hydroxyquinoline (1 mmol, 145.16 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of VOSO4.3H2O (1 mmol, 225.4 mg). The mixture was then stirred at 323 K for 4 h. The solution was held at room temperature for 15 days, whereupon brown needle crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.96 Å, and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(Methoxo-κO)oxidobis(quinolin-8-olato-κ2N,O)vanadium(V) top
Crystal data top
[V(C9H6NO)2(CH3O)O]F(000) = 792
Mr = 386.27Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1311 reflections
a = 14.0405 (16) Åθ = 2.7–25.3°
b = 8.0019 (1) ŵ = 0.63 mm1
c = 15.5920 (18) ÅT = 298 K
β = 110.560 (1)°Needle, brown
V = 1640.2 (3) Å30.44 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube1378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.768, Tmax = 0.900k = 96
7660 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1126P)2]
where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[V(C9H6NO)2(CH3O)O]V = 1640.2 (3) Å3
Mr = 386.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0405 (16) ŵ = 0.63 mm1
b = 8.0019 (1) ÅT = 298 K
c = 15.5920 (18) Å0.44 × 0.18 × 0.17 mm
β = 110.560 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2893 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1378 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.900Rint = 0.102
7660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.00Δρmax = 0.81 e Å3
2893 reflectionsΔρmin = 0.69 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.26796 (9)0.67329 (14)0.24257 (8)0.0458 (5)
N10.3527 (4)0.4493 (6)0.3065 (4)0.0403 (13)
N20.1379 (4)0.4855 (6)0.1896 (4)0.0446 (14)
O10.2435 (3)0.6607 (6)0.3552 (3)0.0536 (13)
O20.2803 (3)0.5922 (6)0.1345 (3)0.0479 (12)
O30.1746 (3)0.8276 (6)0.2010 (4)0.0592 (14)
O40.3700 (3)0.7827 (5)0.2732 (3)0.0522 (13)
C10.4069 (5)0.3432 (8)0.2784 (5)0.0504 (18)
H10.40350.35020.21780.060*
C20.4686 (5)0.2221 (9)0.3334 (6)0.059 (2)
H20.50430.14800.31000.071*
C30.4762 (5)0.2133 (8)0.4233 (6)0.058 (2)
H30.51890.13450.46180.069*
C40.4199 (5)0.3227 (8)0.4578 (5)0.0426 (16)
C50.3577 (5)0.4370 (7)0.3952 (4)0.0370 (15)
C60.2987 (5)0.5570 (8)0.4210 (5)0.0427 (17)
C70.3040 (5)0.5595 (9)0.5099 (4)0.0522 (19)
H70.26610.63660.52920.063*
C80.3665 (6)0.4458 (10)0.5716 (5)0.060 (2)
H80.36950.44980.63210.072*
C90.4238 (5)0.3288 (9)0.5485 (5)0.056 (2)
H90.46460.25490.59210.067*
C100.0644 (5)0.4382 (8)0.2193 (6)0.061 (2)
H100.06500.47820.27550.073*
C110.0131 (6)0.3317 (10)0.1701 (8)0.078 (3)
H110.06250.30050.19400.094*
C120.0177 (6)0.2729 (10)0.0881 (8)0.081 (3)
H120.07040.20230.05500.097*
C130.0588 (6)0.3196 (9)0.0526 (6)0.061 (2)
C140.1326 (5)0.4281 (8)0.1072 (5)0.0467 (18)
C150.2132 (5)0.4850 (8)0.0794 (5)0.0440 (17)
C160.2162 (6)0.4307 (9)0.0033 (5)0.058 (2)
H160.26790.46690.02320.070*
C170.1425 (8)0.3222 (11)0.0570 (6)0.078 (3)
H170.14580.28590.11250.094*
C180.0657 (7)0.2675 (9)0.0307 (7)0.076 (3)
H180.01720.19480.06830.092*
C190.1912 (6)1.0013 (10)0.2138 (7)0.088 (3)
H19A0.16921.03850.26230.132*
H19B0.15341.05880.15820.132*
H19C0.26241.02460.22950.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0373 (7)0.0496 (8)0.0487 (8)0.0070 (6)0.0128 (6)0.0060 (6)
N10.031 (3)0.048 (3)0.045 (4)0.007 (3)0.017 (3)0.002 (3)
N20.034 (3)0.044 (3)0.057 (4)0.010 (3)0.018 (3)0.014 (3)
O10.046 (3)0.060 (3)0.056 (3)0.021 (2)0.020 (3)0.007 (3)
O20.035 (3)0.058 (3)0.050 (3)0.002 (2)0.015 (2)0.008 (2)
O30.044 (3)0.060 (3)0.072 (4)0.012 (2)0.018 (3)0.014 (3)
O40.041 (3)0.050 (3)0.061 (3)0.003 (2)0.012 (3)0.004 (2)
C10.051 (4)0.051 (4)0.055 (5)0.012 (4)0.027 (4)0.001 (4)
C20.047 (5)0.054 (5)0.086 (7)0.013 (4)0.036 (5)0.001 (4)
C30.042 (4)0.045 (4)0.081 (6)0.009 (3)0.016 (4)0.013 (4)
C40.033 (4)0.045 (4)0.048 (5)0.001 (3)0.010 (3)0.012 (4)
C50.027 (3)0.042 (4)0.043 (4)0.000 (3)0.013 (3)0.006 (3)
C60.028 (4)0.049 (4)0.048 (5)0.001 (3)0.009 (3)0.002 (4)
C70.049 (5)0.077 (5)0.034 (4)0.002 (4)0.019 (4)0.005 (4)
C80.059 (5)0.084 (6)0.035 (4)0.012 (5)0.014 (4)0.001 (4)
C90.038 (4)0.068 (5)0.052 (5)0.002 (4)0.006 (4)0.024 (4)
C100.040 (4)0.055 (5)0.098 (7)0.010 (4)0.037 (5)0.013 (5)
C110.043 (5)0.059 (6)0.139 (10)0.002 (4)0.039 (6)0.019 (6)
C120.033 (5)0.050 (5)0.135 (10)0.000 (4)0.002 (6)0.018 (6)
C130.046 (5)0.053 (5)0.064 (6)0.004 (4)0.006 (4)0.004 (4)
C140.039 (4)0.036 (4)0.057 (5)0.009 (3)0.006 (4)0.010 (4)
C150.032 (4)0.044 (4)0.048 (5)0.009 (3)0.004 (4)0.010 (4)
C160.056 (5)0.070 (5)0.047 (5)0.018 (4)0.017 (4)0.002 (4)
C170.089 (7)0.069 (6)0.059 (6)0.013 (5)0.004 (6)0.018 (5)
C180.071 (6)0.043 (5)0.077 (7)0.002 (4)0.022 (5)0.001 (5)
C190.061 (6)0.072 (6)0.135 (9)0.015 (5)0.040 (6)0.016 (6)
C190.061 (6)0.072 (6)0.135 (9)0.015 (5)0.040 (6)0.016 (6)
Geometric parameters (Å, º) top
V1—O41.602 (4)C7—C81.390 (9)
V1—O31.752 (5)C7—H70.9300
V1—O21.870 (5)C8—C91.363 (9)
V1—O11.907 (5)C8—H80.9300
V1—N12.188 (5)C9—H90.9300
V1—N22.284 (6)C10—C111.383 (11)
N1—C11.314 (7)C10—H100.9300
N1—C51.364 (7)C11—C121.341 (12)
N2—C101.326 (8)C11—H110.9300
N2—C141.342 (8)C12—C131.421 (12)
O1—C61.335 (7)C12—H120.9300
O2—C151.339 (8)C13—C141.390 (10)
O3—C191.412 (9)C13—C181.400 (12)
C1—C21.380 (9)C14—C151.422 (9)
C1—H10.9300C15—C161.375 (9)
C2—C31.369 (10)C16—C171.385 (11)
C2—H20.9300C16—H160.9300
C3—C41.408 (9)C17—C181.353 (12)
C3—H30.9300C17—H170.9300
C4—C91.397 (9)C18—H180.9300
C4—C51.397 (8)C19—H19A0.9600
C5—C61.416 (8)C19—H19B0.9600
C6—C71.362 (8)C19—H19C0.9600
O4—V1—O3101.5 (2)C6—C7—C8119.4 (7)
O4—V1—O295.9 (2)C6—C7—H7120.3
O3—V1—O2101.9 (2)C8—C7—H7120.3
O4—V1—O1100.7 (2)C9—C8—C7123.7 (7)
O3—V1—O191.4 (2)C9—C8—H8118.1
O2—V1—O1156.3 (2)C7—C8—H8118.1
O4—V1—N191.5 (2)C8—C9—C4118.3 (7)
O3—V1—N1164.3 (2)C8—C9—H9120.8
O2—V1—N185.35 (19)C4—C9—H9120.8
O1—V1—N177.40 (19)N2—C10—C11122.6 (8)
O4—V1—N2170.1 (2)N2—C10—H10118.7
O3—V1—N286.0 (2)C11—C10—H10118.7
O2—V1—N276.2 (2)C12—C11—C10120.8 (8)
O1—V1—N285.3 (2)C12—C11—H11119.6
N1—V1—N282.15 (19)C10—C11—H11119.6
C1—N1—C5117.5 (6)C11—C12—C13119.2 (8)
C1—N1—V1131.5 (5)C11—C12—H12120.4
C5—N1—V1110.4 (4)C13—C12—H12120.4
C10—N2—C14116.6 (6)C14—C13—C18118.4 (8)
C10—N2—V1133.1 (5)C14—C13—C12115.4 (8)
C14—N2—V1109.9 (4)C18—C13—C12126.2 (9)
C6—O1—V1119.8 (4)N2—C14—C13125.4 (7)
C15—O2—V1122.2 (4)N2—C14—C15113.6 (6)
C19—O3—V1125.2 (5)C13—C14—C15121.0 (8)
N1—C1—C2123.9 (7)O2—C15—C16123.9 (6)
N1—C1—H1118.1O2—C15—C14117.8 (6)
C2—C1—H1118.1C16—C15—C14118.3 (7)
C3—C2—C1118.6 (6)C15—C16—C17120.1 (8)
C3—C2—H2120.7C15—C16—H16119.9
C1—C2—H2120.7C17—C16—H16119.9
C2—C3—C4120.5 (7)C18—C17—C16121.7 (8)
C2—C3—H3119.7C18—C17—H17119.1
C4—C3—H3119.7C16—C17—H17119.1
C9—C4—C5118.5 (6)C17—C18—C13120.4 (8)
C9—C4—C3125.5 (7)C17—C18—H18119.8
C5—C4—C3115.9 (6)C13—C18—H18119.8
N1—C5—C4123.6 (6)O3—C19—H19A109.5
N1—C5—C6114.3 (6)O3—C19—H19B109.5
C4—C5—C6122.0 (6)H19A—C19—H19B109.5
O1—C6—C7125.6 (6)O3—C19—H19C109.5
O1—C6—C5116.3 (6)H19A—C19—H19C109.5
C7—C6—C5118.1 (6)H19B—C19—H19C109.5
O4—V1—N1—C180.2 (6)C9—C4—C5—N1175.8 (6)
O3—V1—N1—C1133.7 (9)C3—C4—C5—N12.3 (9)
O2—V1—N1—C115.5 (6)C9—C4—C5—C60.4 (9)
O1—V1—N1—C1179.1 (6)C3—C4—C5—C6178.5 (6)
N2—V1—N1—C192.2 (6)V1—O1—C6—C7165.8 (5)
O4—V1—N1—C590.4 (4)V1—O1—C6—C512.9 (7)
O3—V1—N1—C555.8 (10)N1—C5—C6—O12.5 (8)
O2—V1—N1—C5173.9 (4)C4—C5—C6—O1179.1 (5)
O1—V1—N1—C510.3 (4)N1—C5—C6—C7176.3 (6)
N2—V1—N1—C597.2 (4)C4—C5—C6—C70.3 (9)
O3—V1—N2—C1074.5 (6)O1—C6—C7—C8178.6 (6)
O2—V1—N2—C10177.7 (6)C5—C6—C7—C80.1 (10)
O1—V1—N2—C1017.3 (6)C6—C7—C8—C90.3 (11)
N1—V1—N2—C1095.2 (6)C7—C8—C9—C40.2 (11)
O3—V1—N2—C1497.8 (4)C5—C4—C9—C80.2 (10)
O2—V1—N2—C145.4 (4)C3—C4—C9—C8178.1 (6)
O1—V1—N2—C14170.4 (4)C14—N2—C10—C111.6 (10)
N1—V1—N2—C1492.5 (4)V1—N2—C10—C11173.5 (5)
O4—V1—O1—C676.6 (5)N2—C10—C11—C121.0 (12)
O3—V1—O1—C6178.6 (5)C10—C11—C12—C130.8 (12)
O2—V1—O1—C656.9 (7)C11—C12—C13—C141.3 (11)
N1—V1—O1—C612.6 (4)C11—C12—C13—C18179.0 (8)
N2—V1—O1—C695.6 (5)C10—N2—C14—C132.3 (9)
O4—V1—O2—C15178.2 (5)V1—N2—C14—C13176.0 (5)
O3—V1—O2—C1578.7 (5)C10—N2—C14—C15179.5 (5)
O1—V1—O2—C1544.0 (7)V1—N2—C14—C155.8 (6)
N1—V1—O2—C1587.2 (5)C18—C13—C14—N2178.1 (6)
N2—V1—O2—C154.1 (4)C12—C13—C14—N22.1 (10)
O4—V1—O3—C1912.4 (7)C18—C13—C14—C150.0 (10)
O2—V1—O3—C19111.0 (6)C12—C13—C14—C15179.8 (6)
O1—V1—O3—C1988.8 (6)V1—O2—C15—C16175.9 (5)
N1—V1—O3—C19132.9 (8)V1—O2—C15—C142.3 (8)
N2—V1—O3—C19174.0 (6)N2—C14—C15—O23.1 (8)
C5—N1—C1—C20.5 (10)C13—C14—C15—O2178.6 (6)
V1—N1—C1—C2169.5 (5)N2—C14—C15—C16178.6 (6)
N1—C1—C2—C31.6 (11)C13—C14—C15—C160.3 (10)
C1—C2—C3—C41.8 (11)O2—C15—C16—C17178.7 (6)
C2—C3—C4—C9177.9 (7)C14—C15—C16—C170.5 (10)
C2—C3—C4—C50.0 (9)C15—C16—C17—C180.4 (12)
C1—N1—C5—C42.5 (9)C16—C17—C18—C130.1 (13)
V1—N1—C5—C4169.6 (5)C14—C13—C18—C170.1 (11)
C1—N1—C5—C6179.0 (6)C12—C13—C18—C17179.6 (8)
V1—N1—C5—C66.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.932.543.355 (8)146
C19—H19B···Cgii0.962.843.520 (9)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[V(C9H6NO)2(CH3O)O]
Mr386.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.0405 (16), 8.0019 (1), 15.5920 (18)
β (°) 110.560 (1)
V3)1640.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.44 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
7660, 2893, 1378
Rint0.102
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.230, 1.00
No. of reflections2893
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.69

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
O3—V1—O2101.9 (2)O2—V1—N185.35 (19)
O3—V1—O191.4 (2)O1—V1—N177.40 (19)
O2—V1—O1156.3 (2)O4—V1—N2170.1 (2)
O3—V1—N1164.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.932.543.355 (8)145.8
C19—H19B···Cgii0.962.843.520 (9)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationCrans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev. 104, 849–902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDiego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813–1820.  Google Scholar
First citationHoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishida, H. & Kojima, M. (1998). Inorg. Chem. 37, 142–145.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtieno, T., Bond, M. R., Mokry, L. M., Walter, R. B. & Carrano, C. J. (1996). J. Chem. Soc. Chem. Commun. pp. 37–38.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761–764.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds