organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(2-Hy­droxy­phen­yl)-5,6-di­hydro­benzimidazolo[1,2-c]quinazolin-12-ium bromide ethanol solvate

aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and bDepartment of Chemistry, Ludiwig-Maximilians University, D-81377 München, Germany
*Correspondence e-mail: thomas.gerber@nmmu.ac.za

(Received 18 August 2009; accepted 18 August 2009; online 22 August 2009)

In the title compound, C20H16N3O+·Br·C2H6O, the phenol ring forms dihedral angles of 84.5 (1) and 89.3 (1)° with the benzimidazole system and the quinazoline benzene ring, respectively. The two N—H groups act as donors in hydrogen bonds with the bromide ion as acceptor, leading to infinite eight-membered chains along [100]. According to graph-set theory the descriptor on the binary level is C21(8). O—H⋯O and O—H⋯Br hydrogen bonds also occur.

Related literature

For the synthesis of quinazolines, see: Kubicova et al. (2003[Kubicova, L., Sustr, M., Kralova, K., Chobnot, V., Vytlacilova, J., Jahodar, L., Vuorela, P., Machacek, M. & Kaustova, J. (2003). Molecules, 8, 756-769.]); Niementowski (1895[Niementowski, S. (1895). J. Prakt. Chem. 51, 546—566.]). For related literature, see: Cuny et al. (1980[Cuny, E., Lichtenthaler, F. W. & Moser, A. (1980). Tetrahedron Lett. 21, 3029-3032.]); Williamson (1957[Williamson, T. A. (1957). Heterocycl. Compd, 6, 331-339.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N3O+·Br·C2H6O

  • Mr = 440.33

  • Triclinic, [P \overline 1]

  • a = 9.3438 (5) Å

  • b = 10.0736 (5) Å

  • c = 10.8452 (5) Å

  • α = 86.832 (4)°

  • β = 77.203 (4)°

  • γ = 84.674 (4)°

  • V = 990.53 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 200 K

  • 0.28 × 0.24 × 0.05 mm

Data collection
  • Oxford XCalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.783, Tmax = 1.000 (expected range = 0.705–0.900)

  • 7695 measured reflections

  • 4004 independent reflections

  • 2664 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.057

  • S = 0.84

  • 4004 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.82 2.657 (2) 175
N1—H71⋯Br1ii 0.88 2.61 3.3501 (17) 142
N3—H73⋯Br1iii 0.88 2.45 3.1956 (18) 143
O2—H2⋯Br1 0.84 2.41 3.2378 (17) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y+1, z; (iii) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2009[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]1).

Supporting information


Comment top

In the present work the structure of 2-(tetrahydrobenzimidazolium[1,2-c]quinazolin-5-yl)phenol bromide has been determined to explore its suitability as a bidentate ligand for various metal ions. In the structure the quinazoline ring adopts a chair conformation: atoms C8, C13, C14, N1 and N2 are coplanar, with atom C7 from the plane by 0.178 Å (Figure 1). The orientation of the phenol ring is determined by a hydrogen-bond between the phenolic oxygen atom and the ethanolic oxygen atom. This ring makes dihedral angles of 84.5° and 89.3° with the benzimidazole and phenyl rings respectively. The ligand bond distances and angles show that N3–C14 is a localized double bond [1.337 (3) Å], with N2–C15 a single bond at 1.398 (3) Å. N3 is protonated, with the C14–N3–C16 bond angle equal to 109.30 (17)°. The N1–C7 bond length is 1.452 (3) Å, and the N1–C7–N2 bond angle [107.71 (16)°] illustrates the sp3 hybridization of C7.

The molecular packing of the title compound is shown in Figure 2. A feature of the structure is parallel stacking of the 5-membered ring N2—C14—N3—C16—C15 and the 6-membered ring C15—C16—C17—C18—C19—C20. These planes have an interplanar angle of 0.45 (11)° and an interplanar distance of 3.4118 (8) Å.

The two O–H groups and the two N–H groups act as donors in four different hydrogen bonds, three of them with bromide as acceptor and one of them with the ethanolic oxygen atom as acceptor. In terms of graph set analysis (Etter et al., 1990; Bernstein et al., 1995), three extended hydrogen bond patterns may be selected and characterized by graph set descriptors. 8-membered chains along [100] are formed by the two hydrogen bonds of the type N–H···Br (graph set descriptor C12(8) on the binary level, Figure 3). A 20-membered ring and a 24-membered ring are formed by six hydrogen bonds within two formula units (Figures 4 and 5). The graph set descriptors R46(20) and R46(24), respectively, can be assigned on the ternary level.

Related literature top

For the synthesis of quinazolines, see: Kubicova et al. (2003); Niementowski (1895). For related literature, see: Cuny et al. (1980); Williamson (1957). For graph-set analysis, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

All chemicals used (reagent grade) were commercially available. A mass of 0.0244 g (200 µmol) of 2-aminobenzaldehyde was dissolved in methanol (10 cm3), and 0.0418 g (200 µmol) of 2-(2-aminophenyl)-1-benzimidazole was added with stirring. After the mixture was heated under reflux for 30 min, a mass of 0.096 g (100 µmol) of trans-[ReOBr3(PPh3)2] was added, and heating was continued for a further 30 min. After cooling to room temperature, the solution was filtered and left to evaporate slowly at room temperature. After 2 days 0.063 g (72%) of colourless crystals, with the formulation [C20H16N3O]Br.C2H6O and suitable for X-ray analysis, were collected. M.p. 211°C. 1H NMR (300 MHz, d6-DMSO): 14.71 (1H, br s), 8.62 (1H,d), 8.58 (1H, d), 8.18 (1H, s), 8.04–8.09 (2H, m), 7.72–7.82 (3H, m), 7.68 (1H, dd), 7.42–7.48 (2H, m), 7.28 (1H, t), 7.19 (1H, t), 7.06 (1H, d), 3.42 (2H, q), 1.23 (3H, t). IR (KBr, cm-1): ν(OH) 3460w, ν(NH) 3275, ν(C=N) 1603 s.

Refinement top

The H atoms were positioned geometrically (C—H = 0.98 Å for CH3, 0.99 Å for CH2, 0.95 Å for CH, 0.84 Å for OH, 0.88 Å for NH) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C/N) for CH and NH, Uiso(H) = 1.5Ueq(C/O) for CH3 and OH].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and publCIF (Westrip, 20091).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probablility level).
[Figure 2] Fig. 2. The packing of the title compound, viewed along [-100].
[Figure 3] Fig. 3. The hydrogen bonds leading to infinite 8-membered chains along [100]. b: N1–H71···Br1, c: N3–H73···Br1.
[Figure 4] Fig. 4. The hydrogen bonds leading to 20-membered rings. a: O1–H1···O2, b: N1–H71···Br1, d: O2–H2···Br1.
[Figure 5] Fig. 5. The hydrogen bonds leading to 24-membered rings. a: O1–H1···O2, c: N3–H73···Br1, d: O2–H2···Br1.
6-(2-Hydroxyphenyl)-5,6-dihydrobenzimidazolo[1,2-c]quinazolin-12-ium bromide ethanol solvate top
Crystal data top
C20H16N3O+·Br·C2H6OF(000) = 452
Mr = 440.33Dx = 1.476 (1) Mg m3
Triclinic, P1Melting point: 484 K
a = 9.3438 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0736 (5) ÅCell parameters from 3249 reflections
c = 10.8452 (5) Åθ = 3.9–26.3°
α = 86.832 (4)°µ = 2.10 mm1
β = 77.203 (4)°T = 200 K
γ = 84.674 (4)°Platelet, yellow
V = 990.53 (9) Å30.28 × 0.24 × 0.05 mm
Z = 2
Data collection top
Oxford XCalibur
diffractometer
4004 independent reflections
Radiation source: fine-focus sealed tube2664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 15.9809 pixels mm-1θmax = 26.3°, θmin = 3.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1212
Tmin = 0.783, Tmax = 1.000l = 1312
7695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
4004 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H16N3O+·Br·C2H6Oγ = 84.674 (4)°
Mr = 440.33V = 990.53 (9) Å3
Triclinic, P1Z = 2
a = 9.3438 (5) ÅMo Kα radiation
b = 10.0736 (5) ŵ = 2.10 mm1
c = 10.8452 (5) ÅT = 200 K
α = 86.832 (4)°0.28 × 0.24 × 0.05 mm
β = 77.203 (4)°
Data collection top
Oxford XCalibur
diffractometer
4004 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2664 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 1.000Rint = 0.030
7695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 0.84Δρmax = 0.60 e Å3
4004 reflectionsΔρmin = 0.35 e Å3
256 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.29 (release 10-06-2008 CrysAlis171 .NET) (compiled Jun 10 2008,16:49:55) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29606 (17)0.74651 (15)0.40530 (15)0.0371 (4)
H10.29970.70260.47280.056*
N10.14604 (19)0.98882 (17)0.28625 (17)0.0320 (5)
H710.05041.00430.29300.038*
N20.38107 (18)0.90626 (17)0.17422 (16)0.0253 (4)
N30.59036 (18)0.96092 (17)0.20465 (17)0.0281 (5)
H730.65510.99640.23780.034*
C10.2175 (2)0.6833 (2)0.3382 (2)0.0261 (5)
C20.1706 (2)0.5575 (2)0.3723 (2)0.0314 (6)
H2A0.19380.51160.44520.038*
C30.0906 (2)0.4986 (2)0.3012 (2)0.0388 (6)
H30.05730.41290.32640.047*
C40.0583 (3)0.5626 (2)0.1941 (2)0.0394 (6)
H40.00400.52110.14470.047*
C50.1056 (2)0.6874 (2)0.1593 (2)0.0324 (6)
H50.08420.73130.08480.039*
C60.1839 (2)0.7507 (2)0.2306 (2)0.0243 (5)
C70.2219 (2)0.8922 (2)0.1944 (2)0.0248 (5)
H70.19180.91710.11270.030*
C80.2073 (2)1.0582 (2)0.3632 (2)0.0268 (5)
C90.1194 (2)1.1389 (2)0.4568 (2)0.0339 (6)
H90.01531.14540.46780.041*
C100.1830 (3)1.2084 (2)0.5323 (2)0.0393 (6)
H100.12181.26220.59570.047*
C110.3347 (3)1.2023 (2)0.5187 (2)0.0369 (6)
H110.37691.25110.57210.044*
C120.4231 (3)1.1247 (2)0.4269 (2)0.0329 (6)
H120.52701.12010.41630.039*
C130.3605 (2)1.0524 (2)0.3490 (2)0.0251 (5)
C140.4443 (2)0.9756 (2)0.2468 (2)0.0249 (5)
C150.4906 (2)0.8449 (2)0.0805 (2)0.0234 (5)
C160.6239 (2)0.8808 (2)0.1001 (2)0.0248 (5)
C170.7569 (2)0.8389 (2)0.0233 (2)0.0300 (6)
H170.84750.86460.03640.036*
C180.7518 (2)0.7580 (2)0.0733 (2)0.0337 (6)
H180.84110.72640.12800.040*
C190.6187 (3)0.7212 (2)0.0929 (2)0.0337 (6)
H190.61990.66500.16070.040*
C200.4854 (2)0.7640 (2)0.0169 (2)0.0315 (6)
H200.39480.73910.03070.038*
O20.7042 (2)0.38247 (17)0.37419 (15)0.0512 (5)
H20.75450.32860.32190.077*
C210.5862 (3)0.4457 (3)0.3245 (3)0.0556 (8)
H21A0.52520.50620.38800.067*
H21B0.52360.37710.30920.067*
C220.6360 (3)0.5233 (3)0.2049 (3)0.0656 (9)
H22A0.70030.59010.21880.098*
H22B0.55030.56830.17740.098*
H22C0.69050.46300.13960.098*
Br10.85598 (3)0.14400 (3)0.18829 (3)0.04163 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0462 (10)0.0364 (10)0.0337 (11)0.0104 (8)0.0197 (9)0.0112 (8)
N10.0167 (10)0.0352 (12)0.0412 (13)0.0017 (9)0.0023 (9)0.0008 (10)
N20.0197 (10)0.0283 (11)0.0270 (12)0.0017 (8)0.0045 (9)0.0048 (9)
N30.0191 (10)0.0346 (12)0.0317 (13)0.0045 (8)0.0079 (9)0.0041 (9)
C10.0221 (12)0.0280 (14)0.0274 (15)0.0020 (10)0.0036 (11)0.0022 (11)
C20.0353 (14)0.0265 (14)0.0296 (16)0.0007 (11)0.0032 (12)0.0029 (11)
C30.0381 (15)0.0302 (15)0.0441 (18)0.0069 (12)0.0013 (13)0.0007 (13)
C40.0369 (15)0.0384 (16)0.0452 (19)0.0079 (12)0.0097 (13)0.0103 (13)
C50.0271 (13)0.0407 (16)0.0291 (15)0.0014 (12)0.0064 (11)0.0007 (12)
C60.0170 (12)0.0280 (13)0.0257 (15)0.0013 (10)0.0007 (10)0.0020 (11)
C70.0168 (12)0.0326 (14)0.0238 (14)0.0003 (10)0.0044 (10)0.0065 (11)
C80.0299 (14)0.0212 (13)0.0265 (15)0.0022 (11)0.0027 (11)0.0084 (11)
C90.0248 (13)0.0294 (14)0.0409 (17)0.0003 (11)0.0037 (12)0.0067 (12)
C100.0484 (17)0.0286 (15)0.0329 (16)0.0009 (12)0.0072 (13)0.0028 (12)
C110.0421 (16)0.0345 (15)0.0332 (17)0.0057 (12)0.0056 (13)0.0005 (12)
C120.0300 (14)0.0313 (15)0.0363 (16)0.0045 (11)0.0060 (12)0.0068 (12)
C130.0253 (13)0.0246 (13)0.0221 (14)0.0006 (10)0.0002 (10)0.0052 (11)
C140.0201 (13)0.0257 (13)0.0269 (15)0.0018 (10)0.0034 (11)0.0093 (11)
C150.0214 (12)0.0229 (13)0.0226 (14)0.0005 (10)0.0000 (10)0.0055 (10)
C160.0268 (13)0.0240 (13)0.0224 (15)0.0012 (10)0.0044 (11)0.0052 (11)
C170.0221 (13)0.0276 (14)0.0382 (16)0.0000 (10)0.0044 (11)0.0055 (12)
C180.0287 (14)0.0324 (15)0.0333 (16)0.0033 (11)0.0041 (11)0.0043 (12)
C190.0407 (16)0.0338 (15)0.0255 (15)0.0018 (12)0.0043 (12)0.0042 (11)
C200.0258 (14)0.0369 (15)0.0329 (16)0.0051 (11)0.0096 (12)0.0059 (12)
O20.0656 (13)0.0575 (13)0.0339 (12)0.0002 (10)0.0217 (10)0.0040 (9)
C210.064 (2)0.0533 (19)0.050 (2)0.0028 (15)0.0179 (16)0.0123 (16)
C220.086 (2)0.0533 (19)0.060 (2)0.0077 (17)0.0255 (18)0.0227 (17)
Br10.02457 (14)0.04927 (18)0.0522 (2)0.00537 (11)0.01119 (12)0.00401 (13)
Geometric parameters (Å, º) top
O1—C11.360 (2)C9—H90.9500
O1—H10.8400C10—C111.388 (3)
N1—C81.365 (3)C10—H100.9500
N1—C71.452 (3)C11—C121.373 (3)
N1—H710.8800C11—H110.9500
N2—C141.342 (3)C12—C131.397 (3)
N2—C151.398 (3)C12—H120.9500
N2—C71.474 (2)C13—C141.427 (3)
N3—C141.336 (2)C15—C201.381 (3)
N3—C161.390 (3)C15—C161.392 (3)
N3—H730.8800C16—C171.379 (3)
C1—C21.383 (3)C17—C181.373 (3)
C1—C61.398 (3)C17—H170.9500
C2—C31.376 (3)C18—C191.393 (3)
C2—H2A0.9500C18—H180.9500
C3—C41.376 (3)C19—C201.380 (3)
C3—H30.9500C19—H190.9500
C4—C51.377 (3)C20—H200.9500
C4—H40.9500O2—C211.416 (3)
C5—C61.390 (3)O2—H20.8400
C5—H50.9500C21—C221.482 (3)
C6—C71.511 (3)C21—H21A0.9900
C7—H71.0000C21—H21B0.9900
C8—C91.401 (3)C22—H22A0.9800
C8—C131.402 (3)C22—H22B0.9800
C9—C101.367 (3)C22—H22C0.9800
C1—O1—H1109.5C12—C11—C10119.2 (2)
C8—N1—C7126.93 (17)C12—C11—H11120.4
C8—N1—H71116.5C10—C11—H11120.4
C7—N1—H71116.5C11—C12—C13120.2 (2)
C14—N2—C15109.14 (17)C11—C12—H12119.9
C14—N2—C7125.15 (18)C13—C12—H12119.9
C15—N2—C7125.64 (18)C12—C13—C8120.6 (2)
C14—N3—C16109.31 (18)C12—C13—C14123.8 (2)
C14—N3—H73125.3C8—C13—C14115.6 (2)
C16—N3—H73125.3N3—C14—N2108.79 (19)
O1—C1—C2122.8 (2)N3—C14—C13128.8 (2)
O1—C1—C6117.34 (19)N2—C14—C13122.39 (19)
C2—C1—C6119.9 (2)C20—C15—C16121.4 (2)
C3—C2—C1120.3 (2)C20—C15—N2132.57 (19)
C3—C2—H2A119.8C16—C15—N2106.04 (19)
C1—C2—H2A119.8C17—C16—N3131.3 (2)
C2—C3—C4120.7 (2)C17—C16—C15122.0 (2)
C2—C3—H3119.7N3—C16—C15106.71 (19)
C4—C3—H3119.7C18—C17—C16116.6 (2)
C3—C4—C5119.2 (2)C18—C17—H17121.7
C3—C4—H4120.4C16—C17—H17121.7
C5—C4—H4120.4C17—C18—C19121.6 (2)
C4—C5—C6121.5 (2)C17—C18—H18119.2
C4—C5—H5119.3C19—C18—H18119.2
C6—C5—H5119.3C20—C19—C18121.9 (2)
C5—C6—C1118.4 (2)C20—C19—H19119.0
C5—C6—C7119.27 (19)C18—C19—H19119.0
C1—C6—C7122.17 (19)C19—C20—C15116.5 (2)
N1—C7—N2107.70 (17)C19—C20—H20121.8
N1—C7—C6113.67 (17)C15—C20—H20121.8
N2—C7—C6112.43 (15)C21—O2—H2109.5
N1—C7—H7107.6O2—C21—C22113.1 (2)
N2—C7—H7107.6O2—C21—H21A109.0
C6—C7—H7107.6C22—C21—H21A109.0
N1—C8—C9121.2 (2)O2—C21—H21B109.0
N1—C8—C13120.7 (2)C22—C21—H21B109.0
C9—C8—C13118.2 (2)H21A—C21—H21B107.8
C10—C9—C8120.3 (2)C21—C22—H22A109.5
C10—C9—H9119.9C21—C22—H22B109.5
C8—C9—H9119.9H22A—C22—H22B109.5
C9—C10—C11121.6 (2)C21—C22—H22C109.5
C9—C10—H10119.2H22A—C22—H22C109.5
C11—C10—H10119.2H22B—C22—H22C109.5
O1—C1—C2—C3179.6 (2)C9—C8—C13—C120.4 (3)
C6—C1—C2—C30.3 (3)N1—C8—C13—C142.8 (3)
C1—C2—C3—C41.2 (3)C9—C8—C13—C14176.06 (19)
C2—C3—C4—C50.8 (3)C16—N3—C14—N20.7 (2)
C3—C4—C5—C60.6 (3)C16—N3—C14—C13177.9 (2)
C4—C5—C6—C11.5 (3)C15—N2—C14—N30.4 (2)
C4—C5—C6—C7174.82 (19)C7—N2—C14—N3176.86 (17)
O1—C1—C6—C5179.06 (19)C15—N2—C14—C13178.27 (18)
C2—C1—C6—C51.0 (3)C7—N2—C14—C134.4 (3)
O1—C1—C6—C74.7 (3)C12—C13—C14—N32.1 (3)
C2—C1—C6—C7175.17 (19)C8—C13—C14—N3174.23 (19)
C8—N1—C7—N214.3 (3)C12—C13—C14—N2179.4 (2)
C8—N1—C7—C6110.9 (2)C8—C13—C14—N24.2 (3)
C14—N2—C7—N112.6 (3)C14—N2—C15—C20179.8 (2)
C15—N2—C7—N1170.59 (17)C7—N2—C15—C202.9 (4)
C14—N2—C7—C6113.4 (2)C14—N2—C15—C160.1 (2)
C15—N2—C7—C663.4 (2)C7—N2—C15—C16177.31 (17)
C5—C6—C7—N1112.5 (2)C14—N3—C16—C17178.9 (2)
C1—C6—C7—N163.7 (2)C14—N3—C16—C150.8 (2)
C5—C6—C7—N2124.8 (2)C20—C15—C16—C170.6 (3)
C1—C6—C7—N259.0 (3)N2—C15—C16—C17179.22 (19)
C7—N1—C8—C9173.6 (2)C20—C15—C16—N3179.71 (19)
C7—N1—C8—C137.6 (3)N2—C15—C16—N30.5 (2)
N1—C8—C9—C10179.5 (2)N3—C16—C17—C18179.6 (2)
C13—C8—C9—C100.7 (3)C15—C16—C17—C180.8 (3)
C8—C9—C10—C110.4 (3)C16—C17—C18—C190.5 (3)
C9—C10—C11—C120.1 (3)C17—C18—C19—C200.1 (3)
C10—C11—C12—C130.4 (3)C18—C19—C20—C150.3 (3)
C11—C12—C13—C80.1 (3)C16—C15—C20—C190.0 (3)
C11—C12—C13—C14176.3 (2)N2—C15—C20—C19179.8 (2)
N1—C8—C13—C12179.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.822.657 (2)175
N1—H71···Br1ii0.882.613.3501 (17)142
N3—H73···Br1iii0.882.453.1956 (18)143
O2—H2···Br10.842.413.2378 (17)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H16N3O+·Br·C2H6O
Mr440.33
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.3438 (5), 10.0736 (5), 10.8452 (5)
α, β, γ (°)86.832 (4), 77.203 (4), 84.674 (4)
V3)990.53 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.28 × 0.24 × 0.05
Data collection
DiffractometerOxford XCalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.783, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7695, 4004, 2664
Rint0.030
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.057, 0.84
No. of reflections4004
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995) and publCIF (Westrip, 20091).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.822.657 (2)175.2
N1—H71···Br1ii0.882.613.3501 (17)141.8
N3—H73···Br1iii0.882.453.1956 (18)142.7
O2—H2···Br10.842.413.2378 (17)167.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCuny, E., Lichtenthaler, F. W. & Moser, A. (1980). Tetrahedron Lett. 21, 3029–3032.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKubicova, L., Sustr, M., Kralova, K., Chobnot, V., Vytlacilova, J., Jahodar, L., Vuorela, P., Machacek, M. & Kaustova, J. (2003). Molecules, 8, 756–769.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNiementowski, S. (1895). J. Prakt. Chem. 51, 546—566.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWilliamson, T. A. (1957). Heterocycl. Compd, 6, 331–339.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds