organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-(4-chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 August 2009; accepted 13 August 2009; online 15 August 2009)

The crystal structure of the title compound, C8H5Br3ClNO, shows both intra­molecular N—H⋯Br and inter­molecular N—H⋯O hydrogen bonding. In the crystal, the mol­ecules are packed into column-like chains in the c-axis direction via the N—H⋯O hydrogen bonds.

Related literature

For the preparation of the compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3392.], 2009[Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5Br3ClNO

  • Mr = 406.31

  • Orthorhombic, P b c a

  • a = 9.7332 (8) Å

  • b = 10.2462 (9) Å

  • c = 23.898 (2) Å

  • V = 2383.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.35 mm−1

  • T = 299 K

  • 0.40 × 0.16 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.104, Tmax = 0.355

  • 5692 measured reflections

  • 2353 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.205

  • S = 1.04

  • 2353 reflections

  • 130 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.04 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br1 0.84 (5) 2.87 (10) 3.197 (8) 105 (8)
N1—H1N⋯O1i 0.84 (5) 2.21 (5) 3.038 (9) 168 (10)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of the ring and side chain substituents on the solid state structures of N-aromatic amides (Gowda et al., 2000, 2007, 2009), the structure of 2,2,2-tribromo-N-(4-chlorophenyl)acetamide has been determined (Fig.1). The conformation of the N—H bond is anti to the C=O bond in the side chain, similar to that observed in N-(4-chlorophenyl)acetamide (Gowda et al., 2007), 2,2,2-trichloro-N-(4-chlorophenyl)acetamide (Gowda et al., 2003), and other amides (Gowda et al., 2009). The structure shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. The packing diagram of molecules showing the hydrogen bonds N1—H1N···O1 (Table 1) involved in the formation of molecular chains in the direction of the c-axis is given in Fig. 2.

Related literature top

For preparation of the compound, see: Gowda et al. (2003). For our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides, see: Gowda et al. (2000, 2007, 2009).

Experimental top

The title compound was prepared from 4-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (5) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The largest residual electron-density features are located in the region of Br3 and Br2. The highest peak is 0.98 Å from Br3 and the deepest hole is 0.50 Å from Br2.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,2,2-Tribromo-N-(4-chlorophenyl)acetamide top
Crystal data top
C8H5Br3ClNOF(000) = 1520
Mr = 406.31Dx = 2.265 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2849 reflections
a = 9.7332 (8) Åθ = 2.6–27.8°
b = 10.2462 (9) ŵ = 10.35 mm1
c = 23.898 (2) ÅT = 299 K
V = 2383.3 (3) Å3Long needle, colourless
Z = 80.40 × 0.16 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2353 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 128
Tmin = 0.104, Tmax = 0.355k = 129
5692 measured reflectionsl = 2921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0891P)2 + 22.8289P]
where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.005
130 parametersΔρmax = 2.04 e Å3
1 restraintΔρmin = 0.95 e Å3
Crystal data top
C8H5Br3ClNOV = 2383.3 (3) Å3
Mr = 406.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7332 (8) ŵ = 10.35 mm1
b = 10.2462 (9) ÅT = 299 K
c = 23.898 (2) Å0.40 × 0.16 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2353 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1643 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.355Rint = 0.033
5692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0801 restraint
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0891P)2 + 22.8289P]
where P = (Fo2 + 2Fc2)/3
2353 reflectionsΔρmax = 2.04 e Å3
130 parametersΔρmin = 0.95 e Å3
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4391 (10)0.4634 (8)0.1037 (4)0.038 (2)
C20.4633 (11)0.3604 (9)0.0673 (5)0.048 (2)
H20.39900.29390.06330.058*
C30.5841 (10)0.3580 (10)0.0369 (5)0.051 (3)
H30.60170.28850.01290.062*
C40.6786 (10)0.4569 (10)0.0418 (4)0.051 (3)
C50.6549 (10)0.5578 (10)0.0790 (5)0.053 (3)
H50.71960.62400.08290.064*
C60.5357 (11)0.5609 (9)0.1103 (4)0.048 (2)
H60.52060.62820.13570.058*
C70.2449 (10)0.5644 (8)0.1518 (4)0.039 (2)
C80.1178 (10)0.5312 (8)0.1876 (4)0.043 (2)
N10.3172 (8)0.4601 (6)0.1361 (3)0.0425 (19)
H1N0.283 (10)0.386 (6)0.140 (4)0.051*
O10.2715 (7)0.6760 (5)0.1408 (3)0.0521 (18)
Cl10.8276 (3)0.4561 (4)0.00254 (14)0.0775 (10)
Br10.00883 (11)0.42751 (13)0.14426 (6)0.0737 (5)
Br20.02425 (15)0.68618 (11)0.21207 (7)0.0817 (5)
Br30.17735 (16)0.43813 (13)0.25385 (5)0.0792 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (5)0.028 (4)0.033 (5)0.007 (4)0.005 (4)0.006 (4)
C20.054 (6)0.036 (5)0.054 (6)0.003 (4)0.005 (5)0.001 (5)
C30.047 (6)0.053 (6)0.054 (6)0.017 (5)0.009 (5)0.006 (5)
C40.040 (5)0.073 (7)0.040 (5)0.011 (5)0.004 (4)0.004 (5)
C50.040 (5)0.050 (6)0.070 (7)0.004 (4)0.008 (5)0.006 (5)
C60.055 (6)0.042 (5)0.046 (6)0.001 (5)0.000 (5)0.014 (5)
C70.042 (4)0.035 (5)0.040 (5)0.001 (4)0.009 (4)0.007 (4)
C80.053 (5)0.023 (4)0.052 (6)0.002 (4)0.011 (5)0.005 (4)
N10.051 (5)0.025 (4)0.052 (5)0.002 (3)0.013 (4)0.007 (3)
O10.056 (4)0.024 (3)0.077 (5)0.003 (3)0.022 (4)0.003 (3)
Cl10.0468 (15)0.117 (3)0.069 (2)0.0073 (16)0.0172 (14)0.0168 (19)
Br10.0450 (6)0.0856 (9)0.0904 (10)0.0022 (6)0.0020 (6)0.0336 (8)
Br20.0900 (9)0.0439 (6)0.1112 (12)0.0043 (6)0.0532 (8)0.0141 (7)
Br30.0860 (9)0.0990 (10)0.0527 (7)0.0108 (7)0.0088 (7)0.0255 (7)
Geometric parameters (Å, º) top
C1—C61.380 (13)C5—H50.9300
C1—C21.389 (13)C6—H60.9300
C1—N11.416 (12)C7—O11.202 (10)
C2—C31.382 (14)C7—N11.334 (11)
C2—H20.9300C7—C81.542 (13)
C3—C41.374 (14)C8—Br21.921 (8)
C3—H30.9300C8—Br11.929 (10)
C4—C51.383 (14)C8—Br31.937 (10)
C4—Cl11.727 (10)N1—H1N0.84 (5)
C5—C61.382 (14)
C6—C1—C2120.4 (9)C1—C6—C5119.5 (9)
C6—C1—N1121.7 (8)C1—C6—H6120.2
C2—C1—N1117.8 (8)C5—C6—H6120.2
C3—C2—C1119.2 (9)O1—C7—N1126.0 (8)
C3—C2—H2120.4O1—C7—C8120.2 (8)
C1—C2—H2120.4N1—C7—C8113.8 (7)
C4—C3—C2120.8 (9)C7—C8—Br2111.5 (6)
C4—C3—H3119.6C7—C8—Br1109.6 (6)
C2—C3—H3119.6Br2—C8—Br1108.4 (5)
C3—C4—C5119.6 (9)C7—C8—Br3108.8 (7)
C3—C4—Cl1120.8 (8)Br2—C8—Br3107.4 (5)
C5—C4—Cl1119.5 (8)Br1—C8—Br3111.0 (4)
C6—C5—C4120.4 (9)C7—N1—C1125.2 (7)
C6—C5—H5119.8C7—N1—H1N119 (7)
C4—C5—H5119.8C1—N1—H1N115 (7)
C6—C1—C2—C31.2 (15)O1—C7—C8—Br22.7 (12)
N1—C1—C2—C3177.3 (9)N1—C7—C8—Br2176.9 (7)
C1—C2—C3—C41.1 (15)O1—C7—C8—Br1117.4 (9)
C2—C3—C4—C52.3 (16)N1—C7—C8—Br163.0 (10)
C2—C3—C4—Cl1178.3 (8)O1—C7—C8—Br3121.0 (9)
C3—C4—C5—C61.3 (16)N1—C7—C8—Br358.6 (9)
Cl1—C4—C5—C6179.3 (8)O1—C7—N1—C10.5 (16)
C2—C1—C6—C52.2 (15)C8—C7—N1—C1179.1 (9)
N1—C1—C6—C5178.1 (9)C6—C1—N1—C736.9 (14)
C4—C5—C6—C11.0 (16)C2—C1—N1—C7147.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.84 (5)2.87 (10)3.197 (8)105 (8)
N1—H1N···O1i0.84 (5)2.21 (5)3.038 (9)168 (10)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H5Br3ClNO
Mr406.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)9.7332 (8), 10.2462 (9), 23.898 (2)
V3)2383.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)10.35
Crystal size (mm)0.40 × 0.16 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.104, 0.355
No. of measured, independent and
observed [I > 2σ(I)] reflections
5692, 2353, 1643
Rint0.033
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.205, 1.04
No. of reflections2353
No. of parameters130
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0891P)2 + 22.8289P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.04, 0.95

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.84 (5)2.87 (10)3.197 (8)105 (8)
N1—H1N···O1i0.84 (5)2.21 (5)3.038 (9)168 (10)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds