organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-1-(4-nitro­phen­yl)benzo[f]quinoline

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu 221116, People's Republic of China
*Correspondence e-mail: slwangxznu@yahoo.cn

(Received 29 July 2009; accepted 6 August 2009; online 12 August 2009)

In the title compound, C25H15ClN2O2, the pyridine ring is inclined at angles of 6.89 (7), 4.24 (9) and 66.98 (4)° with respect to the naphthalene, chloro­phenyl and nitro­phenyl rings, respectively. The two substituent aromatic rings make a dihedral angle of 71.1 (1)° with one another. C—H⋯π and ππ stacking are present in the crystal structure; the ππ stacking [centroid–centroid distance between the pyridyl rings of adjacent mol­ecules= 3.7838 (11) Å] links the mol­ecules into dimers, while the C—H⋯Cg type π–ring inter­actons link the mol­ecules into a chain structure along c.

Related literature

Quinoline and its derivatives are inter­mediates in organic synthesis and are useful dyes, see: Brock et al. (1999[Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). World Patent WO 9951688.]). They possess a broad spectrum of biological activity, such as anti­asthmatic, anti­inflammatory and anti­malarial, see: Fokialakis et al. (2002[Fokialakis, N., Magiatis, P., Chinou, L., Mitaku, S. & Tillequin, F. (2002). Chem. Pharm. Bull. 50, 413-414.]); Ma et al. (2004[Ma, Z., Hano, Y., Nomura, T. & Chen, Y. (2004). Bioorg. Med. Chem. Lett. 14, 1193-1196.]); Sawada et al. (2004[Sawada, Y., Kayakiri, H., Abe, Y., Mizutani, T., Inamura, N., Asano, M., Hatori, C., Aramori, I., Oku, T. & Tanaka, H. (2004). J. Med. Chem. 47, 2853-2863.]). In addition, quinoline derivatives have been evaluated as anti­cancer and anthelmintic agents, see: Sakata et al. (1988[Sakata, G., Makino, K. & Karasawa, Y. (1988). Heterocycles, 27, 2481-2515.]). For related structures, see: Tu et al. (2006[Tu, S.-J., Zhang, Y. & Jia, R.-H. (2006). Acta Cryst. E62, o3930-o3931.]); Xie et al. (2009[Xie, H.-S., Zhang, A.-L. & Su, L. (2009). Acta Cryst. E65, o1074.]).

[Scheme 1]

Experimental

Crystal data
  • C25H15ClN2O2

  • Mr = 410.84

  • Triclinic, [P \overline 1]

  • a = 9.1390 (12) Å

  • b = 9.5350 (11) Å

  • c = 11.9668 (17) Å

  • α = 108.182 (4)°

  • β = 105.366 (4)°

  • γ = 92.739 (3)°

  • V = 945.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 K

  • 0.34 × 0.32 × 0.22 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.926, Tmax = 0.952

  • 11798 measured reflections

  • 4467 independent reflections

  • 3779 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.129

  • S = 1.06

  • 4467 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cgi 0.95 2.72 3.510 (12) 142
Symmetry code: (i) x, y-1, z. Cg is the centroid of the C14–C19 ring.

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure/MSC (Rigaku/MSC (2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Quinoline and its derivatives represent an important class of nitrogen-containing heterocycles as they constitute useful intermediates in organic synthesis and are useful dyes (Brock et al., 1999). They are well known in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activities including such as antiasthmatic, antiinflammatory and antimalarial activity (Sawada, et al., 2004; Ma et al., 2004; Fokialakis et al., 2002). In addition, quinoline derivatives have been evaluated as anticancer and anthelmintic agents (Sakata et al., 1988). We report here the preparation and crystal structure of 3-(4-chlorophenyl)-1-(4-nitrophenyl)benzo[f]quinoline, (I).

In the structure of (I) (Fig. 1), the benzoquinoline moiety is not quite planar as C3 deviates by 0.169 (1) Å from the mean-plane formed by the atoms N1/C1–C13. The pyridine ring is inclined at angles 6.89 (7), 4.24 (9) and 66.98 (4) ° with respect to the naphthalene (C4–C13), and phenyl rings C14–C19 and C20–C25, respectively. The two phenyl rings make a dihedral angle of 71.1 (1) °.

The C—H···π and ππ stacking are present in the crystal structure of (I). The ππ stacking (Cg···Cg distance 3.7838 (11) Å between the pyridyl rings of adjacent molecules) links the molecules into dimmers, while the C24—H24A···Cg stacking links the molecules into polymers (Figure 2).

The following crystal structures of compounds closely related to (I) have been reported: 13-(4-fluorophenyl)-12H-benzo[f]indeno[1,2-b]quinolin-12-one (Tu et al., 2006) and 5-(4-bromophenyl)-1,2,3,4-tetrahydrobenzo[a]phenanthridine (Xie et al., 2009).

Related literature top

Quinoline and its derivatives are intermediates in organic synthesis and are useful dyes, see: Brock et al. (1999). They possess a broad spectrum of biological activity, such as antiasthmatic, antiinflammatory and antimalarial, see: Fokialakis et al. (2002); Ma et al. (2004); Sawada et al. (2004). In addition, quinoline derivatives have been evaluated as anticancer and anthelmintic agents, see: Sakata et al. (1988). For related structures, see: Tu et al. (2006); Xie et al. (2009).

Experimental top

The title compound, (I), was prepared by the reaction of 4-chlorobenzaldehyde (2 mmol, 0.281 g), naphthalen-2-amine (2 mmol, 0.283 g) and 2-bromoacetophenone (2 mmol, 0.498 g) in THF (10 ml) at 338 K catalyzed by iodine. m.p. 559–561 K. The single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I).

Refinement top

H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalClear (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure/MSC (Rigaku/MSC (2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) plotted with 50% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram showing the C—H···π and ππ stacking in the crystal of (I).
3-(4-Chlorophenyl)-1-(4-nitrophenyl)benzo[f]quinoline top
Crystal data top
C25H15ClN2O2Z = 2
Mr = 410.84F(000) = 424
Triclinic, P1Dx = 1.443 Mg m3
Hall symbol: -P 1Melting point = 559–561 K
a = 9.1390 (12) ÅMo Kα radiation, λ = 0.71070 Å
b = 9.5350 (11) ÅCell parameters from 3276 reflections
c = 11.9668 (17) Åθ = 1.9–27.9°
α = 108.182 (4)°µ = 0.23 mm1
β = 105.366 (4)°T = 113 K
γ = 92.739 (3)°Block, yellow
V = 945.6 (2) Å30.34 × 0.32 × 0.22 mm
Data collection top
Rigaku Saturn
diffractometer
4467 independent reflections
Radiation source: rotating anode3779 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.034
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 1999)
k = 1212
Tmin = 0.926, Tmax = 0.952l = 1515
11798 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2446P]
where P = (Fo2 + 2Fc2)/3
4467 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C25H15ClN2O2γ = 92.739 (3)°
Mr = 410.84V = 945.6 (2) Å3
Triclinic, P1Z = 2
a = 9.1390 (12) ÅMo Kα radiation
b = 9.5350 (11) ŵ = 0.23 mm1
c = 11.9668 (17) ÅT = 113 K
α = 108.182 (4)°0.34 × 0.32 × 0.22 mm
β = 105.366 (4)°
Data collection top
Rigaku Saturn
diffractometer
4467 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 1999)
3779 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.952Rint = 0.034
11798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
4467 reflectionsΔρmin = 0.47 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44740 (5)1.45046 (5)0.65255 (4)0.03265 (15)
O10.11873 (18)0.19922 (14)0.55020 (13)0.0390 (4)
O20.20781 (16)0.29045 (15)0.43402 (12)0.0373 (3)
N10.09795 (15)1.16854 (15)0.97919 (12)0.0190 (3)
N20.16218 (16)0.30287 (16)0.52288 (13)0.0237 (3)
C10.03104 (17)1.11236 (17)0.85802 (15)0.0180 (3)
C20.05962 (18)0.97511 (17)0.78672 (15)0.0197 (3)
H20.00850.93700.70080.024*
C30.16056 (18)0.89462 (17)0.83916 (14)0.0178 (3)
C40.24330 (17)0.95634 (17)0.96652 (15)0.0181 (3)
C50.20143 (17)1.09302 (17)1.03223 (15)0.0184 (3)
C60.26619 (18)1.15733 (18)1.16297 (15)0.0212 (3)
H60.23611.24751.20620.025*
C70.36952 (19)1.09148 (19)1.22567 (15)0.0228 (4)
H70.40741.13371.31280.027*
C80.42320 (18)0.95928 (18)1.16351 (15)0.0208 (3)
C90.36459 (18)0.89220 (17)1.03335 (15)0.0193 (3)
C100.43260 (18)0.77063 (18)0.97623 (16)0.0221 (4)
H100.40000.72730.88900.027*
C110.54513 (19)0.71333 (19)1.04391 (17)0.0253 (4)
H110.58790.63081.00290.030*
C120.59711 (19)0.7757 (2)1.17264 (17)0.0265 (4)
H120.67250.73421.21920.032*
C130.53780 (19)0.89731 (19)1.23024 (16)0.0244 (4)
H130.57460.94111.31730.029*
C140.08359 (18)1.19683 (17)0.80328 (15)0.0187 (3)
C150.17082 (19)1.14279 (18)0.67950 (15)0.0224 (4)
H150.15431.05140.62650.027*
C160.28137 (19)1.22157 (19)0.63335 (16)0.0237 (4)
H160.34071.18400.54920.028*
C170.30481 (18)1.35505 (19)0.71036 (16)0.0222 (4)
C180.21770 (19)1.41347 (19)0.83272 (16)0.0236 (4)
H180.23231.50670.88450.028*
C190.10882 (19)1.33288 (18)0.87788 (15)0.0209 (3)
H190.04971.37130.96200.025*
C200.16339 (17)0.74070 (17)0.75715 (15)0.0184 (3)
C210.21663 (19)0.71865 (18)0.65500 (15)0.0216 (3)
H210.25400.80230.63830.026*
C220.21556 (18)0.57585 (18)0.57745 (15)0.0214 (3)
H220.25280.56040.50820.026*
C230.15882 (18)0.45621 (17)0.60359 (14)0.0193 (3)
C240.09988 (19)0.47391 (18)0.70168 (15)0.0221 (4)
H240.05900.38990.71610.027*
C250.10213 (19)0.61767 (18)0.77824 (15)0.0215 (3)
H250.06160.63260.84580.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0261 (2)0.0316 (3)0.0412 (3)0.01053 (18)0.0055 (2)0.0162 (2)
O10.0580 (9)0.0188 (6)0.0367 (8)0.0056 (6)0.0139 (7)0.0046 (6)
O20.0424 (8)0.0319 (7)0.0299 (7)0.0032 (6)0.0144 (6)0.0031 (6)
N10.0188 (7)0.0175 (6)0.0199 (7)0.0015 (5)0.0058 (6)0.0054 (5)
N20.0208 (7)0.0257 (7)0.0182 (7)0.0025 (6)0.0012 (6)0.0022 (6)
C10.0174 (7)0.0159 (7)0.0211 (8)0.0008 (6)0.0073 (6)0.0057 (6)
C20.0201 (8)0.0176 (7)0.0193 (8)0.0014 (6)0.0053 (6)0.0041 (6)
C30.0188 (7)0.0149 (7)0.0202 (8)0.0015 (6)0.0085 (6)0.0042 (6)
C40.0175 (8)0.0159 (7)0.0216 (8)0.0009 (6)0.0073 (6)0.0060 (6)
C50.0176 (7)0.0166 (7)0.0211 (8)0.0013 (6)0.0067 (6)0.0056 (6)
C60.0229 (8)0.0178 (7)0.0206 (8)0.0006 (6)0.0070 (7)0.0031 (6)
C70.0243 (8)0.0227 (8)0.0188 (8)0.0001 (7)0.0048 (7)0.0053 (7)
C80.0192 (8)0.0196 (8)0.0249 (9)0.0003 (6)0.0066 (7)0.0094 (7)
C90.0176 (7)0.0181 (7)0.0235 (8)0.0005 (6)0.0075 (6)0.0080 (7)
C100.0194 (8)0.0216 (8)0.0266 (9)0.0029 (6)0.0084 (7)0.0082 (7)
C110.0209 (8)0.0228 (8)0.0354 (10)0.0054 (7)0.0107 (7)0.0118 (8)
C120.0224 (8)0.0281 (9)0.0340 (10)0.0061 (7)0.0069 (8)0.0182 (8)
C130.0235 (8)0.0262 (9)0.0232 (9)0.0004 (7)0.0033 (7)0.0114 (7)
C140.0189 (8)0.0169 (7)0.0211 (8)0.0016 (6)0.0067 (6)0.0072 (6)
C150.0251 (8)0.0173 (8)0.0231 (9)0.0036 (6)0.0065 (7)0.0049 (7)
C160.0242 (8)0.0232 (8)0.0209 (9)0.0017 (7)0.0027 (7)0.0072 (7)
C170.0182 (8)0.0223 (8)0.0289 (9)0.0042 (6)0.0074 (7)0.0120 (7)
C180.0260 (9)0.0197 (8)0.0260 (9)0.0055 (7)0.0103 (7)0.0062 (7)
C190.0227 (8)0.0199 (8)0.0188 (8)0.0032 (6)0.0061 (7)0.0049 (7)
C200.0167 (7)0.0165 (7)0.0193 (8)0.0041 (6)0.0035 (6)0.0037 (6)
C210.0239 (8)0.0188 (8)0.0221 (8)0.0034 (6)0.0067 (7)0.0069 (7)
C220.0220 (8)0.0243 (8)0.0175 (8)0.0057 (6)0.0060 (7)0.0058 (7)
C230.0183 (8)0.0166 (7)0.0175 (8)0.0048 (6)0.0019 (6)0.0010 (6)
C240.0230 (8)0.0175 (8)0.0247 (9)0.0024 (6)0.0061 (7)0.0064 (7)
C250.0240 (8)0.0194 (8)0.0216 (8)0.0032 (6)0.0097 (7)0.0054 (7)
Geometric parameters (Å, º) top
Cl1—C171.7414 (17)C11—H110.9500
O1—N21.2142 (19)C12—C131.368 (2)
O2—N21.2165 (19)C12—H120.9500
N1—C11.333 (2)C13—H130.9500
N1—C51.359 (2)C14—C191.396 (2)
N2—C231.487 (2)C14—C151.398 (2)
C1—C21.401 (2)C15—C161.388 (2)
C1—C141.490 (2)C15—H150.9500
C2—C31.377 (2)C16—C171.383 (2)
C2—H20.9500C16—H160.9500
C3—C41.424 (2)C17—C181.385 (2)
C3—C201.495 (2)C18—C191.386 (2)
C4—C51.425 (2)C18—H180.9500
C4—C91.464 (2)C19—H190.9500
C5—C61.432 (2)C20—C211.393 (2)
C6—C71.351 (2)C20—C251.396 (2)
C6—H60.9500C21—C221.386 (2)
C7—C81.432 (2)C21—H210.9500
C7—H70.9500C22—C231.386 (2)
C8—C131.412 (2)C22—H220.9500
C8—C91.423 (2)C23—C241.384 (2)
C9—C101.413 (2)C24—C251.386 (2)
C10—C111.379 (2)C24—H240.9500
C10—H100.9500C25—H250.9500
C11—C121.402 (3)
C1—N1—C5118.45 (14)C12—C13—C8121.65 (16)
O1—N2—O2124.78 (15)C12—C13—H13119.2
O1—N2—C23117.66 (14)C8—C13—H13119.2
O2—N2—C23117.56 (14)C19—C14—C15118.20 (15)
N1—C1—C2121.44 (14)C19—C14—C1119.49 (14)
N1—C1—C14117.00 (14)C15—C14—C1122.29 (14)
C2—C1—C14121.43 (14)C16—C15—C14120.53 (15)
C3—C2—C1121.03 (15)C16—C15—H15119.7
C3—C2—H2119.5C14—C15—H15119.7
C1—C2—H2119.5C17—C16—C15119.71 (15)
C2—C3—C4119.17 (14)C17—C16—H16120.1
C2—C3—C20115.55 (14)C15—C16—H16120.1
C4—C3—C20125.06 (14)C16—C17—C18121.18 (15)
C3—C4—C5115.47 (14)C16—C17—Cl1119.34 (13)
C3—C4—C9125.96 (14)C18—C17—Cl1119.48 (13)
C5—C4—C9118.57 (14)C17—C18—C19118.48 (15)
N1—C5—C4124.14 (15)C17—C18—H18120.8
N1—C5—C6115.65 (14)C19—C18—H18120.8
C4—C5—C6120.19 (14)C18—C19—C14121.87 (15)
C7—C6—C5120.86 (15)C18—C19—H19119.1
C7—C6—H6119.6C14—C19—H19119.1
C5—C6—H6119.6C21—C20—C25119.49 (15)
C6—C7—C8121.35 (15)C21—C20—C3120.79 (14)
C6—C7—H7119.3C25—C20—C3119.58 (14)
C8—C7—H7119.3C22—C21—C20120.64 (15)
C13—C8—C9119.58 (15)C22—C21—H21119.7
C13—C8—C7120.33 (15)C20—C21—H21119.7
C9—C8—C7120.06 (15)C23—C22—C21118.27 (15)
C10—C9—C8117.29 (15)C23—C22—H22120.9
C10—C9—C4124.07 (15)C21—C22—H22120.9
C8—C9—C4118.58 (14)C24—C23—C22122.69 (15)
C11—C10—C9121.62 (16)C24—C23—N2118.94 (15)
C11—C10—H10119.2C22—C23—N2118.37 (14)
C9—C10—H10119.2C23—C24—C25118.12 (15)
C10—C11—C12120.63 (16)C23—C24—H24120.9
C10—C11—H11119.7C25—C24—H24120.9
C12—C11—H11119.7C24—C25—C20120.71 (15)
C13—C12—C11119.08 (15)C24—C25—H25119.6
C13—C12—H12120.5C20—C25—H25119.6
C11—C12—H12120.5
C5—N1—C1—C23.2 (2)C9—C8—C13—C121.5 (2)
C5—N1—C1—C14179.07 (13)C7—C8—C13—C12176.50 (15)
N1—C1—C2—C31.3 (2)N1—C1—C14—C193.9 (2)
C14—C1—C2—C3177.01 (14)C2—C1—C14—C19179.74 (15)
C1—C2—C3—C43.6 (2)N1—C1—C14—C15174.37 (15)
C1—C2—C3—C20171.36 (14)C2—C1—C14—C151.5 (2)
C2—C3—C4—C56.1 (2)C19—C14—C15—C161.2 (2)
C20—C3—C4—C5168.31 (14)C1—C14—C15—C16177.03 (15)
C2—C3—C4—C9173.89 (14)C14—C15—C16—C170.3 (3)
C20—C3—C4—C911.7 (3)C15—C16—C17—C181.3 (3)
C1—N1—C5—C40.2 (2)C15—C16—C17—Cl1178.25 (13)
C1—N1—C5—C6178.50 (14)C16—C17—C18—C191.9 (3)
C3—C4—C5—N14.4 (2)Cl1—C17—C18—C19177.61 (12)
C9—C4—C5—N1175.56 (14)C17—C18—C19—C141.0 (3)
C3—C4—C5—C6173.80 (14)C15—C14—C19—C180.6 (2)
C9—C4—C5—C66.2 (2)C1—C14—C19—C18177.75 (15)
N1—C5—C6—C7179.58 (15)C2—C3—C20—C2166.7 (2)
C4—C5—C6—C71.2 (2)C4—C3—C20—C21118.66 (18)
C5—C6—C7—C82.9 (3)C2—C3—C20—C25108.78 (17)
C6—C7—C8—C13176.32 (15)C4—C3—C20—C2565.8 (2)
C6—C7—C8—C91.7 (2)C25—C20—C21—C222.9 (2)
C13—C8—C9—C104.0 (2)C3—C20—C21—C22178.39 (15)
C7—C8—C9—C10174.05 (14)C20—C21—C22—C230.7 (2)
C13—C8—C9—C4178.58 (14)C21—C22—C23—C241.7 (2)
C7—C8—C9—C43.4 (2)C21—C22—C23—N2178.06 (14)
C3—C4—C9—C1010.0 (3)O1—N2—C23—C243.1 (2)
C5—C4—C9—C10170.04 (15)O2—N2—C23—C24176.60 (14)
C3—C4—C9—C8172.80 (14)O1—N2—C23—C22176.65 (15)
C5—C4—C9—C87.2 (2)O2—N2—C23—C223.6 (2)
C8—C9—C10—C113.6 (2)C22—C23—C24—C251.8 (2)
C4—C9—C10—C11179.09 (15)N2—C23—C24—C25177.99 (14)
C9—C10—C11—C120.7 (3)C23—C24—C25—C200.5 (2)
C10—C11—C12—C131.9 (3)C21—C20—C25—C242.8 (2)
C11—C12—C13—C81.5 (3)C3—C20—C25—C24178.38 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···Cgi0.952.723.510 (12)142
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC25H15ClN2O2
Mr410.84
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.1390 (12), 9.5350 (11), 11.9668 (17)
α, β, γ (°)108.182 (4), 105.366 (4), 92.739 (3)
V3)945.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.34 × 0.32 × 0.22
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 1999)
Tmin, Tmax0.926, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
11798, 4467, 3779
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.06
No. of reflections4467
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.47

Computer programs: CrystalClear (Rigaku, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure/MSC (Rigaku/MSC (2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···Cgi0.952.723.510 (12)142
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of Jiangsu Education Committee for financial support.

References

First citationBrock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). World Patent WO 9951688.  Google Scholar
First citationFokialakis, N., Magiatis, P., Chinou, L., Mitaku, S. & Tillequin, F. (2002). Chem. Pharm. Bull. 50, 413–414.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, Z., Hano, Y., Nomura, T. & Chen, Y. (2004). Bioorg. Med. Chem. Lett. 14, 1193–1196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSakata, G., Makino, K. & Karasawa, Y. (1988). Heterocycles, 27, 2481–2515.  CAS Google Scholar
First citationSawada, Y., Kayakiri, H., Abe, Y., Mizutani, T., Inamura, N., Asano, M., Hatori, C., Aramori, I., Oku, T. & Tanaka, H. (2004). J. Med. Chem. 47, 2853–2863.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Zhang, Y. & Jia, R.-H. (2006). Acta Cryst. E62, o3930–o3931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, H.-S., Zhang, A.-L. & Su, L. (2009). Acta Cryst. E65, o1074.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds