metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1137-m1138

Butyl­bis­[μ-4-(2,4,6-tri­methyl­phenyl­amino)pent-3-en-2-onato][4-(2,4,6-tri­methyl­phenyl­amino)pent-3-en-2-onato]dimagnesium

aDepartment of Chemistry and Biochemistry, The University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
*Correspondence e-mail: boere@uleth.ca

(Received 16 August 2009; accepted 21 August 2009; online 29 August 2009)

The structure of the title compound, [Mg2(C4H9)(C14H18NO)3], contains two Mg atoms bridged by two μ2-O atoms from two of the three ketiminate ligands, while the third ketiminate is strictly chelating to one of the Mg atoms, which is thereby five-coordinate. In place of a chelating ligand, the second Mg atom is ligated by a single terminal n-butyl group and thus is four-coordinate. This is, so far, the only structurally characterized mixed magnesium ketiminate–alkyl cluster. The geometry at the first Mg atom is close to trigonal-bipyramidal with one chelating and one bridging O atom in the axial positions and two chelating N and one bridging O atom in the equatorial positions. The geometry at the second Mg atom is very distorted from tetra­hedral, with an O—Mg—C angle of 131.0 (1)°.

Related literature

For structures of the other known magnesium–ketiminate complexes, see: pioneering study (Corraza et al., 1988[Corraza, F., Floriani, C., Chiesi-Villa, A., Guastini, C. & Ciurli, S. (1988). J. Chem. Soc. Dalton Trans. pp. 2341-2345.]); application to chemical vapour deposition (Matthews et al., 2000[Matthews, J. S., Just, O., Obi-Johnson, B. & Rees, W. S. Jr (2000). Chem. Vap. Deposition, 6, 129-132.], 2005[Matthews, J. S., Ouattara, T. S. & Butcher, R. J. (2005). Acta Cryst. E61, m2598-m2600.]; Ouattara et al., 2005[Ouattara, T. S., Butcher, R. J. & Matthews, J. S. (2005). J. Coord. Chem. 58, 461-465.]; Sedai et al., 2008[Sedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495-2503.]); applications in catalysis (Lee et al., 2007[Lee, W.-Y., Hsieh, H.-H., Hsieh, C.-C., Lee, H. M., Lee, G.-H., Huang, J.-H., Wu, T.-C. & Chuang, S.-W. (2007). J. Organomet. Chem. 692, 1131-1137.]; Tang et al., 2007[Tang, H.-Y., Chen, H.-Y., Huang, J.-H. & Lin, C.-C. (2007). Macromolecules, 40, 8855-8860.]). For related heteropenta­dienyl ligands and complexes, see: Boeré et al. (1998[Boeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147-4154.], 2004[Boeré, R. T., Cole, M. L., Junk, P. C., Masuda, J. D. & Wolmershäuser, G. (2004). Chem. Commun., pp. 2564-2565.], 2005[Boeré, R. T., Cole, M. L. & Junk, P. C. (2005). New J. Chem. 29, 128-134.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg2(C4H9)(C14H18NO)3]

  • Mr = 754.61

  • Monoclinic, P 21 /n

  • a = 20.016 (2) Å

  • b = 10.7515 (12) Å

  • c = 20.720 (2) Å

  • β = 94.154 (1)°

  • V = 4447.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.35 × 0.31 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.977

  • 57968 measured reflections

  • 9082 independent reflections

  • 5810 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.166

  • S = 1.02

  • 9082 reflections

  • 503 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Comparative mean bond distances (Å) to Mg in 4, 5 and 6-coordinate ketiminate complexes

CN4 / Cmpd (I) (II) (III) (IV)    
O chelate   1.895 (2) 1.921 (5) 1.917 (2)    
O bridge 2.000 (2)          
N chelate   2.059 (1) 2.076 (6) 2.081 (8)    
N bridge* 2.107 (2)          
             
CN5 / Cmpd (I) (V) (VI) (VII) (VIII)  
O chelate 1.951 (2) 1.972 (9) 1.945 (2) 1.954 (1) 1.952 (5)  
O bridge 2.06 (3) 2.025 (2)#     2.028 (5)  
N chelate 2.105 (2) 2.161 (2) 2.18 (3) 2.045 (2) 2.107 (5)  
N bridge* 2.153 (2)       2.125 (6)  
             
CN6 / Cmpd (IX) (X) (XI)      
O chelate   2.018 (1) 2.007 (3)      
O bridge 2.075 (7)          
N chelate   2.162 (1) 2.307 (9)      
N bridge* 2.201 (5)          
Notes: compound (I) corresponds to the title compound and (II)–(XI) are defined in the supplementary material. (*) The `N bridge' indicates a ketiminate N atom for ligands where the O donor is doubly-bridged between two Mg atoms. (#) Terminal rather than bridging ketiminate O atom.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2006[Bruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. J. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (I) was prepared as part of our interest in heteropentadienyl ligands bearing bulky aryl substituents at nitrogen (and phosphorus) donor atoms (Boeré et al., 1998, 2004, 2005). The structure (Fig. 1) of (I) contains two Mg atoms bridged by two µ2 oxygen atoms from two of the three ketiminate ligands, while the third ketiminate is strictly chelating to Mg1 which is thereby five coordinate. In place of this chelating ligand, Mg2 retains a butyl group originating in the di-n-butylmagnesium reagent used in its synthesis, and thus Mg2 is four coordinate. The geometry at Mg1 is close to trigonal bipyramidal with one chelating and one bridging oxygen in the axial positions and two chelating nitrogen and one bridging oxygen in the equatorial positions. The geometry at Mg2 is very distorted tetrahedral with the O2-Mg2-C43 angle at 131.0 (1)°. The terminal butyl group, unsurprisingly, has somewhat higher thermal motion parameters than the geometrically much more constrained ketiminate ligands. There are no significant inter-molecular contacts within the crystal lattice.

There are 14 previously reported Mg ketiminate complexes in the literature which display a wide variety of interesting structures (Refcodes: DAZDOY, GIKCIM, GUHQAB, KALJIR, REYYEA, REYYIE, REYYOK, TOQNAP, TOQNET, TOQNIX; Allen, 2002,). Bis(2-(2,6-Diisopropylphenylamino)pent-2-en-4-onato-N,O)-magnesium (II) (Lee, et al., 2007); bis(4-N-(cyclohexylimino)pent-2-en-4-onato)-magnesium (III) (Ouattara, et al., 2005) and bis(5-(2,2-dimethylhydrazido)-2,6-dimethyl-4-hepten-3-onato-N,O)-magnesium (IV) (Sedai, et al., 2008) are 4-coordinate, distorted tetrahedral, with two chelating ketiminate ligands. Bis(2-(2,6-diisopropylphenylamino)pent-2-en-4-onato-N,O)-(2-(2,6-diisopropylphenylamino)pent-2-en-4-onato-O)-magnesium (V) is five coordinate with two chelating and one terminally-O bonded ketiminate ligands, while bis(2-(2,6-diisopropylphenylamino)pent-2-en-4-onato-N,O)-(pyridine-N)-magnesium (VI) is five coordinate with two chelating ketiminate and a terminal pyridine ligand (Lee, et al., 2007). Bis(µ2-4-(2,2-dimethylhydrazido)-3-penten-2-onato-N,O,O)-bis(4-(2,2-dimethylhydrazido)-3-penten-2-onato-N,O)-di-magnesium (VII) is a dimer with five coordinate Mg atoms each bearing one chelating and one bridging ligand in which the oxygen atoms form a trapezoidal Mg2O2 central ring (Sedai, et al., 2008). Bis(µ2-N,N'-ethylenebis(acetylacetoniminato-O,O,O',N,N'))-dimagnesium (VIII) is also an oxygen-bridged dimer, but it contains only two tetradentate diketiminate ligands which are linked by a CH2CH2 chain between the two imino donor atoms (Corazza, et al.). Hexakis(µ2-4-(N-n-butylimino)pentan-2-onato-N,O,O)-tri-magnesium (IX) is an interesting example of a six-coordinate Mg complex. Two terminal Mg atoms each have three chelating ketiminate ligands, while a central Mg is coordinated by all six O donor atoms in a bridging fashion (Matthews et al., 2005). Bis(5-N-(N,N-dimethylaminopropyl)-2,2,7-trimethyl-3-octanonato)-magnesium (X) is six-coordinate octahedral by virtue of two ketiminate ligands with pendant CH2CH2NMe2 donors (Matthews et al., 2000). Bis(5-(2,2-dimethylhydrazido)-2,6-dimethyl-4-hepten-3-onato-N,O)-transbis(4-t-butylpyridine)-magnesium (XI) bears two chelating ketiminate and two terminal pyridine donors, the latter in the axial position of the octahedral structure (Sedai, et al., 2008). The remaining known structures are poorer comparisons to (I) because they each include an η-5 cyclopentadienyl ligand which leads to rather different geometries (Refcodes: TOQNOD, TOQNUY, TOQPAR; Allen, 2002,) or have no reported geometrical details (Tang et al., 2007).

Mean Mg—L distances for the ketiminate donor groups for (I)-(XI) are presented in Table 1. The table shows some very interesting trends, within which the 4- and 5-coordinate distances found in (I) are squarely placed. For example, the Mg—O and Mg—N distances for chelating ketiminate ligands show distinct increases with increasing coordination number from four to six, despite the fact that a range of distances is found at each level. Notice also that in each case the Mg—O or Mg—N distances where the ligands participate in bridging are longer than those which are strictly chelating. This is true for the O donors which are µ2 coordinated to two Mg2+ ions each, but also for the N donors which bond to a single magnesium ion.

Related literature top

For structures of the other known magnesium–ketiminate complexes, see: pioneering study (Corraza et al. (1988); application to chemical vapour deposition (Matthews et al., 2000, 2005; Ouattara et al., 2005; Sedai et al. (2008)); applications in catalysis (Lee et al., 2007; Tang et al., 2007). For related heteropentadienyl ligands and complexes, see: Boeré et al. (1998, 2004, 2005). For a description of the Cambridge Structural Database, see: Allen (2002);

Experimental top

4-(N-2,4,6-trimethylphenylimino)pentane-2-one (0.317 g, 1.459 mmol) was dissolved in 12.5 ml dry heptane in a Schlenk tube and cooled in an ice/salt bath to 260 K and a heptane solution of dibutylmagnesium was added by syringe (0.8 ml of 1.0 M, 0.8 mmol). After completion of the addition, the reaction was allowed to warm to room temperature and stirred for a further hour. The heptane was removed by vacuum until solid started coming out of solution and then the residual mixture was heated till the solid re-dissolved in the remaining heptane. On placing in a freezer at 263 K, X-ray quality crystals of the title compound were obtained as large, yellow blocks.

Refinement top

All the non-H atoms were refined anisotropically and provided chemically reasonable positions without resorting to any restraints or constraints. H-atoms were included at geometrically idealized positions with C—H distances of 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and Uiso = 1.2 times Ueq of the C-atoms to which they are bonded. The model was refined to convergence. The highest residual peak was small (0.31 e-3) but is located w.r.t. C44 of the butyl group in the correct location for a classic CH2 "elbow" disorder. Thermal coefficients for the terminal bultyl group are in any case higher than those for the backbone and mesityl group carbon atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I), plotted with dispacement ellipsoids drawn at 30% probability level; H atoms are omited for clarity.
Butylbis[µ-4-(2,4,6-trimethylphenylamino)pent-3-en-2-onato][4-(2,4,6- trimethylphenylamino)pent-3-en-2-onato]dimagnesium(II) top
Crystal data top
[Mg2(C4H9)(C14H18NO)3]F(000) = 1632
Mr = 754.61Dx = 1.127 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8867 reflections
a = 20.016 (2) Åθ = 2.3–23.5°
b = 10.7515 (12) ŵ = 0.10 mm1
c = 20.720 (2) ÅT = 173 K
β = 94.154 (1)°Prism, yellow
V = 4447.3 (8) Å30.35 × 0.31 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9082 independent reflections
Radiation source: fine-focus sealed tube, Bruker D85810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2524
Tmin = 0.906, Tmax = 0.977k = 1313
57968 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0707P)2 + 3.119P]
where P = (Fo2 + 2Fc2)/3
9082 reflections(Δ/σ)max < 0.001
503 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mg2(C4H9)(C14H18NO)3]V = 4447.3 (8) Å3
Mr = 754.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 20.016 (2) ŵ = 0.10 mm1
b = 10.7515 (12) ÅT = 173 K
c = 20.720 (2) Å0.35 × 0.31 × 0.22 mm
β = 94.154 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
5810 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.977Rint = 0.065
57968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
9082 reflectionsΔρmin = 0.37 e Å3
503 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00341 (4)0.15436 (8)0.20348 (4)0.0312 (2)
Mg20.11126 (4)0.10955 (8)0.31177 (4)0.0325 (2)
O10.00970 (8)0.17052 (16)0.10943 (8)0.0358 (4)
O20.09942 (8)0.12165 (15)0.21528 (7)0.0314 (4)
O30.01501 (8)0.16096 (16)0.30108 (8)0.0349 (4)
N10.06094 (10)0.0096 (2)0.19363 (10)0.0357 (5)
N20.17489 (10)0.26552 (19)0.31215 (9)0.0318 (5)
N30.05901 (10)0.32324 (19)0.21540 (10)0.0350 (5)
C10.04882 (14)0.1662 (3)0.00035 (13)0.0472 (7)
H15A0.06140.25430.00030.057*
H15B0.08140.12050.02880.057*
H15C0.00420.15800.01640.057*
C20.04800 (13)0.1139 (3)0.06704 (12)0.0369 (6)
C30.08641 (13)0.0111 (3)0.07919 (13)0.0413 (6)
H170.11370.02090.04360.050*
C40.08961 (13)0.0517 (3)0.13865 (13)0.0407 (6)
C50.12758 (16)0.1737 (3)0.13691 (16)0.0546 (8)
H19A0.09650.24190.14850.066*
H19B0.14840.18760.09330.066*
H19C0.16230.17060.16780.066*
C60.06439 (13)0.0846 (2)0.25060 (13)0.0390 (6)
C70.11648 (14)0.0688 (3)0.29138 (14)0.0456 (7)
C80.11454 (17)0.1369 (3)0.34859 (15)0.0569 (9)
H220.14970.12660.37650.068*
C90.06325 (18)0.2189 (3)0.36633 (15)0.0557 (8)
C100.01289 (17)0.2324 (3)0.32513 (15)0.0533 (8)
H250.02270.28830.33670.064*
C110.01210 (14)0.1677 (2)0.26724 (14)0.0435 (7)
C120.17251 (15)0.0206 (3)0.27396 (16)0.0584 (8)
H20A0.15410.10400.26830.070*
H20B0.20330.02230.30870.070*
H20C0.19680.00600.23350.070*
C130.0619 (2)0.2901 (4)0.42905 (17)0.0822 (12)
H24A0.09780.25990.45480.099*
H24B0.01850.27780.45330.099*
H24C0.06850.37880.41990.099*
C140.04347 (15)0.1869 (3)0.22311 (16)0.0524 (8)
H27A0.02540.22580.18280.063*
H27B0.07780.24090.24440.063*
H27C0.06340.10640.21340.063*
C150.14678 (13)0.1038 (3)0.11291 (11)0.0393 (6)
H14A0.14850.01300.11660.047*
H14B0.18580.13330.09140.047*
H14C0.10570.12830.08750.047*
C160.14727 (12)0.1600 (2)0.17895 (11)0.0310 (5)
C170.19433 (13)0.2446 (2)0.19922 (12)0.0358 (6)
H120.22540.26690.16870.043*
C180.20325 (13)0.3054 (2)0.26160 (12)0.0357 (6)
C190.24825 (17)0.4177 (3)0.26465 (14)0.0545 (8)
H10A0.24570.45920.30650.065*
H10B0.23380.47540.22980.065*
H10C0.29450.39160.25970.065*
C200.18963 (12)0.3257 (2)0.37385 (11)0.0325 (5)
C210.14650 (13)0.4164 (2)0.39439 (12)0.0377 (6)
C220.15864 (14)0.4660 (3)0.45614 (13)0.0438 (7)
H60.12920.52780.47050.053*
C230.21219 (14)0.4278 (3)0.49714 (13)0.0457 (7)
C240.25498 (13)0.3395 (3)0.47480 (12)0.0412 (6)
H30.29260.31390.50220.049*
C250.24492 (12)0.2870 (3)0.41391 (12)0.0362 (6)
C260.08908 (15)0.4633 (3)0.35033 (15)0.0528 (8)
H9A0.05420.49680.37630.063*
H9B0.07060.39470.32350.063*
H9C0.10500.52900.32240.063*
C270.22286 (18)0.4803 (4)0.56497 (15)0.0695 (10)
H5A0.20430.56450.56590.083*
H5B0.27090.48300.57790.083*
H5C0.20030.42720.59510.083*
C280.29308 (14)0.1916 (3)0.39100 (13)0.0459 (7)
H1A0.32630.17080.42650.055*
H1B0.31590.22550.35460.055*
H1C0.26840.11640.37710.055*
C290.01285 (16)0.1521 (4)0.41057 (14)0.0615 (9)
H33A0.01900.06170.40890.074*
H33B0.04480.18870.43880.074*
H33C0.03290.17120.42770.074*
C300.02454 (13)0.2056 (3)0.34334 (12)0.0394 (6)
C310.06998 (13)0.2967 (3)0.32936 (12)0.0429 (7)
H310.09710.32000.36310.051*
C320.08170 (13)0.3619 (3)0.26931 (12)0.0388 (6)
C330.12145 (16)0.4816 (3)0.27273 (15)0.0557 (8)
H29A0.13140.51430.22890.067*
H29B0.09520.54280.29880.067*
H29C0.16350.46490.29270.067*
C340.07408 (13)0.3956 (2)0.15778 (12)0.0367 (6)
C350.02485 (14)0.4728 (2)0.13529 (12)0.0388 (6)
C360.03917 (16)0.5389 (3)0.07850 (13)0.0469 (7)
H390.00590.59240.06340.056*
C370.10038 (17)0.5294 (3)0.04308 (14)0.0508 (8)
C380.14741 (15)0.4488 (3)0.06546 (14)0.0493 (7)
H410.18920.43960.04120.059*
C390.13564 (14)0.3807 (3)0.12220 (13)0.0423 (7)
C400.04239 (15)0.4845 (3)0.17229 (14)0.0487 (7)
H38A0.03630.51450.21610.058*
H38B0.07020.54340.15010.058*
H38C0.06440.40300.17470.058*
C410.1152 (2)0.6065 (3)0.01740 (15)0.0671 (10)
H42A0.14490.55980.04830.081*
H42B0.07320.62520.03700.081*
H42C0.13700.68430.00610.081*
C420.18706 (14)0.2924 (3)0.14444 (14)0.0530 (8)
H34A0.16800.20850.14790.064*
H34B0.22620.29200.11320.064*
H34C0.20060.31880.18680.064*
C430.14225 (16)0.0420 (3)0.37340 (13)0.0501 (7)
H46A0.10810.10770.36520.060*
H46B0.18400.07420.35670.060*
C440.1552 (2)0.0353 (4)0.44479 (17)0.0718 (10)
H43A0.11410.00400.46320.086*
H43B0.19090.02690.45470.086*
C450.1757 (2)0.1558 (4)0.47962 (19)0.0901 (14)
H44A0.13840.21610.47330.108*
H44B0.21470.19130.45920.108*
C460.1937 (2)0.1421 (5)0.5509 (2)0.0985 (15)
H45A0.23190.08540.55780.118*
H45B0.20560.22360.56950.118*
H45C0.15530.10830.57190.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0311 (4)0.0316 (4)0.0302 (4)0.0017 (3)0.0028 (3)0.0048 (3)
Mg20.0343 (5)0.0333 (5)0.0293 (4)0.0028 (4)0.0026 (3)0.0028 (3)
O10.0366 (10)0.0386 (10)0.0311 (9)0.0009 (8)0.0041 (7)0.0061 (8)
O20.0301 (9)0.0350 (9)0.0285 (8)0.0012 (7)0.0013 (7)0.0007 (7)
O30.0325 (9)0.0434 (10)0.0286 (9)0.0019 (8)0.0005 (7)0.0032 (8)
N10.0356 (12)0.0339 (12)0.0370 (12)0.0030 (9)0.0026 (9)0.0058 (9)
N20.0321 (11)0.0355 (11)0.0270 (10)0.0024 (9)0.0034 (8)0.0007 (9)
N30.0357 (12)0.0354 (12)0.0335 (11)0.0009 (9)0.0010 (9)0.0055 (9)
C10.0449 (16)0.0589 (19)0.0364 (14)0.0018 (14)0.0057 (12)0.0068 (13)
C20.0337 (14)0.0431 (15)0.0329 (13)0.0088 (12)0.0050 (11)0.0108 (12)
C30.0420 (15)0.0424 (16)0.0375 (14)0.0004 (13)0.0099 (12)0.0121 (12)
C40.0367 (15)0.0362 (14)0.0481 (16)0.0003 (12)0.0048 (12)0.0128 (12)
C50.0550 (19)0.0446 (18)0.0621 (19)0.0103 (15)0.0109 (15)0.0128 (15)
C60.0400 (15)0.0328 (14)0.0431 (15)0.0107 (12)0.0039 (12)0.0042 (12)
C70.0418 (16)0.0442 (16)0.0502 (17)0.0124 (13)0.0011 (13)0.0056 (13)
C80.058 (2)0.061 (2)0.0531 (18)0.0261 (17)0.0136 (15)0.0073 (16)
C90.068 (2)0.0457 (18)0.0517 (18)0.0188 (16)0.0081 (16)0.0056 (14)
C100.059 (2)0.0340 (15)0.065 (2)0.0095 (14)0.0092 (16)0.0050 (14)
C110.0464 (16)0.0293 (14)0.0534 (17)0.0093 (12)0.0064 (13)0.0007 (12)
C120.0431 (18)0.072 (2)0.061 (2)0.0050 (16)0.0084 (15)0.0052 (17)
C130.110 (3)0.076 (3)0.059 (2)0.028 (2)0.005 (2)0.0155 (19)
C140.0527 (18)0.0359 (16)0.068 (2)0.0037 (14)0.0009 (15)0.0006 (14)
C150.0408 (15)0.0446 (16)0.0319 (13)0.0046 (12)0.0022 (11)0.0041 (12)
C160.0321 (13)0.0331 (13)0.0270 (12)0.0057 (11)0.0026 (10)0.0027 (10)
C170.0361 (14)0.0407 (15)0.0309 (13)0.0040 (12)0.0042 (11)0.0004 (11)
C180.0334 (14)0.0400 (15)0.0330 (13)0.0064 (11)0.0028 (11)0.0016 (11)
C190.067 (2)0.058 (2)0.0394 (16)0.0294 (16)0.0063 (14)0.0016 (14)
C200.0326 (13)0.0351 (14)0.0292 (12)0.0065 (11)0.0016 (10)0.0011 (10)
C210.0349 (14)0.0377 (15)0.0399 (14)0.0034 (12)0.0013 (11)0.0001 (12)
C220.0412 (16)0.0452 (16)0.0454 (16)0.0019 (13)0.0047 (12)0.0097 (13)
C230.0426 (16)0.0569 (18)0.0372 (14)0.0055 (14)0.0001 (12)0.0114 (13)
C240.0348 (14)0.0555 (18)0.0321 (13)0.0023 (13)0.0058 (11)0.0022 (12)
C250.0308 (14)0.0446 (15)0.0329 (13)0.0059 (11)0.0005 (10)0.0028 (11)
C260.0526 (18)0.0454 (17)0.0582 (19)0.0087 (14)0.0107 (15)0.0046 (15)
C270.064 (2)0.095 (3)0.0482 (19)0.008 (2)0.0041 (16)0.0302 (19)
C280.0397 (16)0.0580 (19)0.0387 (15)0.0073 (13)0.0073 (12)0.0070 (13)
C290.054 (2)0.094 (3)0.0363 (16)0.0074 (18)0.0052 (14)0.0025 (16)
C300.0326 (14)0.0543 (17)0.0309 (13)0.0060 (13)0.0001 (11)0.0046 (12)
C310.0356 (15)0.0601 (18)0.0332 (13)0.0003 (13)0.0041 (11)0.0119 (13)
C320.0320 (14)0.0450 (16)0.0391 (14)0.0007 (12)0.0009 (11)0.0118 (12)
C330.0563 (19)0.059 (2)0.0514 (18)0.0145 (16)0.0032 (15)0.0171 (15)
C340.0428 (15)0.0330 (14)0.0337 (13)0.0107 (12)0.0004 (11)0.0072 (11)
C350.0461 (16)0.0309 (14)0.0385 (14)0.0047 (12)0.0029 (12)0.0050 (11)
C360.0615 (19)0.0350 (15)0.0435 (16)0.0058 (14)0.0000 (14)0.0020 (12)
C370.070 (2)0.0405 (16)0.0410 (16)0.0172 (15)0.0047 (15)0.0028 (13)
C380.0499 (18)0.0507 (18)0.0446 (16)0.0165 (15)0.0137 (13)0.0104 (14)
C390.0421 (16)0.0418 (16)0.0421 (15)0.0116 (13)0.0029 (12)0.0102 (12)
C400.0519 (18)0.0431 (16)0.0496 (17)0.0064 (14)0.0056 (14)0.0042 (13)
C410.089 (3)0.060 (2)0.0499 (19)0.0203 (19)0.0115 (17)0.0048 (16)
C420.0403 (16)0.066 (2)0.0516 (18)0.0028 (15)0.0061 (13)0.0110 (15)
C430.0574 (19)0.0479 (17)0.0450 (16)0.0050 (14)0.0035 (14)0.0086 (14)
C440.083 (3)0.067 (2)0.064 (2)0.001 (2)0.0053 (19)0.0197 (19)
C450.100 (3)0.101 (3)0.071 (3)0.027 (3)0.020 (2)0.038 (2)
C460.088 (3)0.105 (4)0.101 (3)0.009 (3)0.004 (3)0.043 (3)
Geometric parameters (Å, º) top
Mg1—O11.9514 (18)C20—C251.398 (3)
Mg1—O32.0304 (18)C21—C221.391 (4)
Mg1—O22.0848 (18)C21—C261.502 (4)
Mg1—N12.107 (2)C22—C231.381 (4)
Mg1—N32.153 (2)C22—H60.9500
Mg1—Mg23.1287 (11)C23—C241.381 (4)
Mg2—O22.0005 (17)C23—C271.515 (4)
Mg2—O32.0011 (19)C24—C251.383 (3)
Mg2—N22.105 (2)C24—H30.9500
Mg2—C432.134 (3)C25—C281.508 (4)
O1—C21.278 (3)C26—H9A0.9800
O2—C161.326 (3)C26—H9B0.9800
O3—C301.313 (3)C26—H9C0.9800
N1—C41.318 (3)C27—H5A0.9800
N1—C61.435 (3)C27—H5B0.9800
N2—C181.300 (3)C27—H5C0.9800
N2—C201.444 (3)C28—H1A0.9800
N3—C321.304 (3)C28—H1B0.9800
N3—C341.438 (3)C28—H1C0.9800
C1—C21.504 (4)C29—C301.509 (4)
C1—H15A0.9800C29—H33A0.9800
C1—H15B0.9800C29—H33B0.9800
C1—H15C0.9800C29—H33C0.9800
C2—C31.380 (4)C30—C311.354 (4)
C3—C41.410 (4)C31—C321.433 (4)
C3—H170.9500C31—H310.9500
C4—C51.515 (4)C32—C331.517 (4)
C5—H19A0.9800C33—H29A0.9800
C5—H19B0.9800C33—H29B0.9800
C5—H19C0.9800C33—H29C0.9800
C6—C71.399 (4)C34—C351.394 (4)
C6—C111.400 (4)C34—C391.399 (4)
C7—C81.391 (4)C35—C361.387 (4)
C7—C121.501 (4)C35—C401.505 (4)
C8—C91.383 (5)C36—C371.386 (4)
C8—H220.9500C36—H390.9500
C9—C101.375 (5)C37—C381.384 (4)
C9—C131.507 (4)C37—C411.514 (4)
C10—C111.388 (4)C38—C391.390 (4)
C10—H250.9500C38—H410.9500
C11—C141.504 (4)C39—C421.497 (4)
C12—H20A0.9800C40—H38A0.9800
C12—H20B0.9800C40—H38B0.9800
C12—H20C0.9800C40—H38C0.9800
C13—H24A0.9800C41—H42A0.9800
C13—H24B0.9800C41—H42B0.9800
C13—H24C0.9800C41—H42C0.9800
C14—H27A0.9800C42—H34A0.9800
C14—H27B0.9800C42—H34B0.9800
C14—H27C0.9800C42—H34C0.9800
C15—C161.495 (3)C43—C441.485 (4)
C15—H14A0.9800C43—H46A0.9900
C15—H14B0.9800C43—H46B0.9900
C15—H14C0.9800C44—C451.525 (5)
C16—C171.354 (3)C44—H43A0.9900
C17—C181.448 (3)C44—H43B0.9900
C17—H120.9500C45—C461.502 (5)
C18—C191.505 (4)C45—H44A0.9900
C19—H10A0.9800C45—H44B0.9900
C19—H10B0.9800C46—H45A0.9800
C19—H10C0.9800C46—H45B0.9800
C20—C211.390 (4)C46—H45C0.9800
O1—Mg1—O3170.21 (8)H10B—C19—H10C109.5
O1—Mg1—O297.11 (7)C21—C20—C25120.6 (2)
O3—Mg1—O277.45 (7)C21—C20—N2119.6 (2)
O1—Mg1—N189.00 (8)C25—C20—N2119.6 (2)
O3—Mg1—N1100.61 (8)C20—C21—C22118.7 (2)
O2—Mg1—N1113.46 (8)C20—C21—C26120.9 (2)
O1—Mg1—N392.46 (8)C22—C21—C26120.4 (3)
O3—Mg1—N385.09 (8)C23—C22—C21121.9 (3)
O2—Mg1—N3130.01 (8)C23—C22—H6119.1
N1—Mg1—N3115.66 (9)C21—C22—H6119.1
O1—Mg1—Mg2136.12 (6)C22—C23—C24118.1 (2)
O3—Mg1—Mg238.76 (5)C22—C23—C27120.7 (3)
O2—Mg1—Mg239.04 (5)C24—C23—C27121.2 (3)
N1—Mg1—Mg2107.94 (7)C23—C24—C25122.2 (3)
N3—Mg1—Mg2113.96 (6)C23—C24—H3118.9
O2—Mg2—O380.09 (7)C25—C24—H3118.9
O2—Mg2—N288.84 (8)C24—C25—C20118.5 (2)
O3—Mg2—N2110.96 (8)C24—C25—C28120.7 (2)
O2—Mg2—C43130.99 (10)C20—C25—C28120.8 (2)
O3—Mg2—C43120.85 (11)C21—C26—H9A109.5
N2—Mg2—C43117.15 (11)C21—C26—H9B109.5
O2—Mg2—Mg141.02 (5)H9A—C26—H9B109.5
O3—Mg2—Mg139.44 (5)C21—C26—H9C109.5
N2—Mg2—Mg1106.98 (6)H9A—C26—H9C109.5
C43—Mg2—Mg1135.48 (10)H9B—C26—H9C109.5
C2—O1—Mg1129.51 (17)C23—C27—H5A109.5
C16—O2—Mg2123.32 (14)C23—C27—H5B109.5
C16—O2—Mg1128.95 (14)H5A—C27—H5B109.5
Mg2—O2—Mg199.94 (8)C23—C27—H5C109.5
C30—O3—Mg2130.48 (15)H5A—C27—H5C109.5
C30—O3—Mg1127.03 (16)H5B—C27—H5C109.5
Mg2—O3—Mg1101.80 (8)C25—C28—H1A109.5
C4—N1—C6118.3 (2)C25—C28—H1B109.5
C4—N1—Mg1124.86 (19)H1A—C28—H1B109.5
C6—N1—Mg1116.66 (15)C25—C28—H1C109.5
C18—N2—C20119.5 (2)H1A—C28—H1C109.5
C18—N2—Mg2124.00 (17)H1B—C28—H1C109.5
C20—N2—Mg2116.41 (15)C30—C29—H33A109.5
C32—N3—C34118.3 (2)C30—C29—H33B109.5
C32—N3—Mg1125.59 (18)H33A—C29—H33B109.5
C34—N3—Mg1116.09 (15)C30—C29—H33C109.5
C2—C1—H15A109.5H33A—C29—H33C109.5
C2—C1—H15B109.5H33B—C29—H33C109.5
H15A—C1—H15B109.5O3—C30—C31123.4 (2)
C2—C1—H15C109.5O3—C30—C29114.6 (2)
H15A—C1—H15C109.5C31—C30—C29122.0 (2)
H15B—C1—H15C109.5C30—C31—C32127.2 (2)
O1—C2—C3124.8 (2)C30—C31—H31116.4
O1—C2—C1115.2 (2)C32—C31—H31116.4
C3—C2—C1120.0 (2)N3—C32—C31122.9 (2)
C2—C3—C4127.2 (2)N3—C32—C33121.8 (3)
C2—C3—H17116.4C31—C32—C33115.3 (2)
C4—C3—H17116.4C32—C33—H29A109.5
N1—C4—C3123.1 (3)C32—C33—H29B109.5
N1—C4—C5120.3 (3)H29A—C33—H29B109.5
C3—C4—C5116.6 (2)C32—C33—H29C109.5
C4—C5—H19A109.5H29A—C33—H29C109.5
C4—C5—H19B109.5H29B—C33—H29C109.5
H19A—C5—H19B109.5C35—C34—C39120.6 (2)
C4—C5—H19C109.5C35—C34—N3119.3 (2)
H19A—C5—H19C109.5C39—C34—N3120.0 (2)
H19B—C5—H19C109.5C36—C35—C34118.8 (3)
C7—C6—C11120.3 (3)C36—C35—C40120.8 (3)
C7—C6—N1120.7 (2)C34—C35—C40120.5 (2)
C11—C6—N1118.8 (2)C37—C36—C35122.1 (3)
C8—C7—C6118.4 (3)C37—C36—H39118.9
C8—C7—C12121.1 (3)C35—C36—H39118.9
C6—C7—C12120.6 (3)C38—C37—C36117.7 (3)
C9—C8—C7122.4 (3)C38—C37—C41121.5 (3)
C9—C8—H22118.8C36—C37—C41120.7 (3)
C7—C8—H22118.8C37—C38—C39122.4 (3)
C10—C9—C8117.8 (3)C37—C38—H41118.8
C10—C9—C13120.9 (3)C39—C38—H41118.8
C8—C9—C13121.3 (3)C38—C39—C34118.3 (3)
C9—C10—C11122.6 (3)C38—C39—C42121.1 (3)
C9—C10—H25118.7C34—C39—C42120.6 (3)
C11—C10—H25118.7C35—C40—H38A109.5
C10—C11—C6118.5 (3)C35—C40—H38B109.5
C10—C11—C14120.8 (3)H38A—C40—H38B109.5
C6—C11—C14120.7 (3)C35—C40—H38C109.5
C7—C12—H20A109.5H38A—C40—H38C109.5
C7—C12—H20B109.5H38B—C40—H38C109.5
H20A—C12—H20B109.5C37—C41—H42A109.5
C7—C12—H20C109.5C37—C41—H42B109.5
H20A—C12—H20C109.5H42A—C41—H42B109.5
H20B—C12—H20C109.5C37—C41—H42C109.5
C9—C13—H24A109.5H42A—C41—H42C109.5
C9—C13—H24B109.5H42B—C41—H42C109.5
H24A—C13—H24B109.5C39—C42—H34A109.5
C9—C13—H24C109.5C39—C42—H34B109.5
H24A—C13—H24C109.5H34A—C42—H34B109.5
H24B—C13—H24C109.5C39—C42—H34C109.5
C11—C14—H27A109.5H34A—C42—H34C109.5
C11—C14—H27B109.5H34B—C42—H34C109.5
H27A—C14—H27B109.5C44—C43—Mg2125.6 (2)
C11—C14—H27C109.5C44—C43—H46A105.9
H27A—C14—H27C109.5Mg2—C43—H46A105.9
H27B—C14—H27C109.5C44—C43—H46B105.9
C16—C15—H14A109.5Mg2—C43—H46B105.9
C16—C15—H14B109.5H46A—C43—H46B106.2
H14A—C15—H14B109.5C43—C44—C45116.9 (3)
C16—C15—H14C109.5C43—C44—H43A108.1
H14A—C15—H14C109.5C45—C44—H43A108.1
H14B—C15—H14C109.5C43—C44—H43B108.1
O2—C16—C17123.2 (2)C45—C44—H43B108.1
O2—C16—C15115.9 (2)H43A—C44—H43B107.3
C17—C16—C15120.9 (2)C46—C45—C44114.8 (4)
C16—C17—C18128.2 (2)C46—C45—H44A108.6
C16—C17—H12115.9C44—C45—H44A108.6
C18—C17—H12115.9C46—C45—H44B108.6
N2—C18—C17122.5 (2)C44—C45—H44B108.6
N2—C18—C19121.7 (2)H44A—C45—H44B107.6
C17—C18—C19115.7 (2)C45—C46—H45A109.5
C18—C19—H10A109.5C45—C46—H45B109.5
C18—C19—H10B109.5H45A—C46—H45B109.5
H10A—C19—H10B109.5C45—C46—H45C109.5
C18—C19—H10C109.5H45A—C46—H45C109.5
H10A—C19—H10C109.5H45B—C46—H45C109.5
O1—Mg1—Mg2—O22.68 (11)C4—N1—C6—C791.8 (3)
O3—Mg1—Mg2—O2170.01 (12)Mg1—N1—C6—C792.8 (2)
N1—Mg1—Mg2—O2105.38 (10)C4—N1—C6—C1192.7 (3)
N3—Mg1—Mg2—O2124.68 (10)Mg1—N1—C6—C1182.7 (3)
O1—Mg1—Mg2—O3167.33 (13)C11—C6—C7—C80.4 (4)
O2—Mg1—Mg2—O3170.01 (12)N1—C6—C7—C8174.9 (2)
N1—Mg1—Mg2—O384.61 (10)C11—C6—C7—C12179.7 (3)
N3—Mg1—Mg2—O345.33 (10)N1—C6—C7—C124.3 (4)
O1—Mg1—Mg2—N264.77 (11)C6—C7—C8—C90.0 (4)
O3—Mg1—Mg2—N2102.56 (11)C12—C7—C8—C9179.3 (3)
O2—Mg1—Mg2—N267.46 (10)C7—C8—C9—C100.1 (5)
N1—Mg1—Mg2—N2172.84 (9)C7—C8—C9—C13179.1 (3)
N3—Mg1—Mg2—N257.23 (10)C8—C9—C10—C110.2 (4)
O1—Mg1—Mg2—C43107.55 (15)C13—C9—C10—C11179.4 (3)
O3—Mg1—Mg2—C4385.13 (15)C9—C10—C11—C60.6 (4)
O2—Mg1—Mg2—C43104.86 (15)C9—C10—C11—C14179.0 (3)
N1—Mg1—Mg2—C430.52 (15)C7—C6—C11—C100.7 (4)
N3—Mg1—Mg2—C43130.45 (14)N1—C6—C11—C10174.8 (2)
O2—Mg1—O1—C2126.9 (2)C7—C6—C11—C14178.9 (2)
N1—Mg1—O1—C213.4 (2)N1—C6—C11—C145.6 (4)
N3—Mg1—O1—C2102.3 (2)Mg2—O2—C16—C1731.5 (3)
Mg2—Mg1—O1—C2128.58 (19)Mg1—O2—C16—C17111.4 (2)
O3—Mg2—O2—C16145.11 (18)Mg2—O2—C16—C15148.50 (17)
N2—Mg2—O2—C1633.60 (18)Mg1—O2—C16—C1568.6 (3)
C43—Mg2—O2—C1692.3 (2)O2—C16—C17—C181.7 (4)
Mg1—Mg2—O2—C16151.5 (2)C15—C16—C17—C18178.3 (3)
O3—Mg2—O2—Mg16.42 (8)C20—N2—C18—C17175.8 (2)
N2—Mg2—O2—Mg1117.93 (8)Mg2—N2—C18—C170.8 (4)
C43—Mg2—O2—Mg1116.12 (14)C20—N2—C18—C193.5 (4)
O1—Mg1—O2—C1628.9 (2)Mg2—N2—C18—C19179.9 (2)
O3—Mg1—O2—C16142.8 (2)C16—C17—C18—N215.5 (4)
N1—Mg1—O2—C16120.93 (19)C16—C17—C18—C19165.1 (3)
N3—Mg1—O2—C1670.3 (2)C18—N2—C20—C2196.8 (3)
Mg2—Mg1—O2—C16149.2 (2)Mg2—N2—C20—C2186.4 (2)
O1—Mg1—O2—Mg2178.13 (8)C18—N2—C20—C2587.0 (3)
O3—Mg1—O2—Mg26.39 (8)Mg2—N2—C20—C2589.8 (2)
N1—Mg1—O2—Mg289.87 (9)C25—C20—C21—C221.4 (4)
N3—Mg1—O2—Mg278.85 (11)N2—C20—C21—C22174.8 (2)
O2—Mg2—O3—C30164.2 (2)C25—C20—C21—C26176.8 (3)
N2—Mg2—O3—C3079.3 (2)N2—C20—C21—C267.0 (4)
C43—Mg2—O3—C3063.6 (3)C20—C21—C22—C230.2 (4)
Mg1—Mg2—O3—C30170.8 (3)C26—C21—C22—C23177.9 (3)
O2—Mg2—O3—Mg16.64 (8)C21—C22—C23—C241.2 (4)
N2—Mg2—O3—Mg191.53 (9)C21—C22—C23—C27177.9 (3)
C43—Mg2—O3—Mg1125.53 (12)C22—C23—C24—C251.4 (4)
O2—Mg1—O3—C30164.9 (2)C27—C23—C24—C25177.6 (3)
N1—Mg1—O3—C3083.2 (2)C23—C24—C25—C200.3 (4)
N3—Mg1—O3—C3032.0 (2)C23—C24—C25—C28179.5 (3)
Mg2—Mg1—O3—C30171.3 (2)C21—C20—C25—C241.1 (4)
O2—Mg1—O3—Mg26.43 (8)N2—C20—C25—C24175.1 (2)
N1—Mg1—O3—Mg2105.49 (9)C21—C20—C25—C28178.0 (2)
N3—Mg1—O3—Mg2139.29 (9)N2—C20—C25—C285.8 (4)
O1—Mg1—N1—C46.5 (2)Mg2—O3—C30—C31140.9 (2)
O3—Mg1—N1—C4175.4 (2)Mg1—O3—C30—C3127.8 (4)
O2—Mg1—N1—C4103.8 (2)Mg2—O3—C30—C2935.8 (3)
N3—Mg1—N1—C485.7 (2)Mg1—O3—C30—C29155.4 (2)
Mg2—Mg1—N1—C4145.3 (2)O3—C30—C31—C322.1 (5)
O1—Mg1—N1—C6168.54 (18)C29—C30—C31—C32174.4 (3)
O3—Mg1—N1—C69.59 (19)C34—N3—C32—C31179.6 (2)
O2—Mg1—N1—C671.22 (19)Mg1—N3—C32—C312.3 (4)
N3—Mg1—N1—C699.21 (19)C34—N3—C32—C331.6 (4)
Mg2—Mg1—N1—C629.77 (19)Mg1—N3—C32—C33179.0 (2)
O2—Mg2—N2—C1818.0 (2)C30—C31—C32—N314.9 (5)
O3—Mg2—N2—C1896.9 (2)C30—C31—C32—C33163.9 (3)
C43—Mg2—N2—C18118.7 (2)C32—N3—C34—C35102.3 (3)
Mg1—Mg2—N2—C1855.3 (2)Mg1—N3—C34—C3580.1 (3)
O2—Mg2—N2—C20165.39 (17)C32—N3—C34—C3982.7 (3)
O3—Mg2—N2—C2086.46 (17)Mg1—N3—C34—C3994.9 (2)
C43—Mg2—N2—C2058.0 (2)C39—C34—C35—C362.9 (4)
Mg1—Mg2—N2—C20128.07 (16)N3—C34—C35—C36177.9 (2)
O1—Mg1—N3—C32170.3 (2)C39—C34—C35—C40177.5 (2)
O3—Mg1—N3—C3219.2 (2)N3—C34—C35—C402.5 (4)
O2—Mg1—N3—C3288.3 (2)C34—C35—C36—C370.8 (4)
N1—Mg1—N3—C3280.2 (2)C40—C35—C36—C37179.5 (3)
Mg2—Mg1—N3—C3245.7 (2)C35—C36—C37—C381.3 (4)
O1—Mg1—N3—C347.11 (18)C35—C36—C37—C41177.8 (3)
O3—Mg1—N3—C34163.39 (18)C36—C37—C38—C391.5 (4)
O2—Mg1—N3—C3494.30 (19)C41—C37—C38—C39177.5 (3)
N1—Mg1—N3—C3497.18 (19)C37—C38—C39—C340.4 (4)
Mg2—Mg1—N3—C34136.85 (16)C37—C38—C39—C42178.8 (3)
Mg1—O1—C2—C311.8 (4)C35—C34—C39—C382.7 (4)
Mg1—O1—C2—C1168.86 (17)N3—C34—C39—C38177.6 (2)
O1—C2—C3—C41.7 (4)C35—C34—C39—C42176.6 (2)
C1—C2—C3—C4177.7 (3)N3—C34—C39—C421.6 (4)
C6—N1—C4—C3176.7 (2)O2—Mg2—C43—C44173.9 (2)
Mg1—N1—C4—C31.7 (4)O3—Mg2—C43—C4481.4 (3)
C6—N1—C4—C52.5 (4)N2—Mg2—C43—C4459.4 (3)
Mg1—N1—C4—C5177.51 (19)Mg1—Mg2—C43—C44128.9 (3)
C2—C3—C4—N18.3 (4)Mg2—C43—C44—C45178.9 (3)
C2—C3—C4—C5170.9 (3)C43—C44—C45—C46175.2 (3)

Experimental details

Crystal data
Chemical formula[Mg2(C4H9)(C14H18NO)3]
Mr754.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)20.016 (2), 10.7515 (12), 20.720 (2)
β (°) 94.154 (1)
V3)4447.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.31 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.906, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
57968, 9082, 5810
Rint0.065
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.166, 1.02
No. of reflections9082
No. of parameters503
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Comparative mean bond distances (Å) to Mg in 4, 5 and 6-coordinate ketiminate complexes top
CN4/Cmpd(I)(II)(III)(IV)
O chelate1.895 (2)1.921 (5)1.917 (2)
O bridge2.000 (2)
N chelate2.059 (1)2.076 (6)2.081 (8)
N bridge*2.107 (2)
CN5 / Cmpd(I)(V)(VI)(VII)(VIII)
O chelate1.951 (2)1.972 (9)1.945 (2)1.954 (1)1.952 (5)
O bridge2.06 (3)2.025 (2)#2.028 (5)
N chelate2.105 (2)2.161 (2)2.18 (3)2.045 (2)2.107 (5)
N bridge*2.153 (2)2.125 (6)
CN6/Cmpd(IX)(X)(XI)
O chelate2.018 (1)2.007 (3)
O bridge2.075 (7)
N chelate2.162 (1)2.307 (9)
N bridge*2.201 (5)
Notes: compound (I) corresponds to the title compound and (II)–(XI) are defined in the supplementary material. (*) The N bridge indicates a ketiminate N atom for ligands where the O donor is doubly-bridged between two Mg atoms. (#) Terminal rather than bridging ketiminate O atom.
 

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeré, R. T., Cole, M. L. & Junk, P. C. (2005). New J. Chem. 29, 128–134.  Google Scholar
First citationBoeré, R. T., Cole, M. L., Junk, P. C., Masuda, J. D. & Wolmershäuser, G. (2004). Chem. Commun., pp. 2564–2565.  Google Scholar
First citationBoeré, R. T., Klassen, V. & Wolmershäuser, G. (1998). J. Chem. Soc. Dalton Trans. pp. 4147–4154.  Google Scholar
First citationBruker (2006). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorraza, F., Floriani, C., Chiesi-Villa, A., Guastini, C. & Ciurli, S. (1988). J. Chem. Soc. Dalton Trans. pp. 2341–2345.  Google Scholar
First citationLee, W.-Y., Hsieh, H.-H., Hsieh, C.-C., Lee, H. M., Lee, G.-H., Huang, J.-H., Wu, T.-C. & Chuang, S.-W. (2007). J. Organomet. Chem. 692, 1131–1137.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatthews, J. S., Just, O., Obi-Johnson, B. & Rees, W. S. Jr (2000). Chem. Vap. Deposition, 6, 129–132.  CrossRef CAS Google Scholar
First citationMatthews, J. S., Ouattara, T. S. & Butcher, R. J. (2005). Acta Cryst. E61, m2598–m2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuattara, T. S., Butcher, R. J. & Matthews, J. S. (2005). J. Coord. Chem. 58, 461–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationSedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495–2503.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, H.-Y., Chen, H.-Y., Huang, J.-H. & Lin, C.-C. (2007). Macromolecules, 40, 8855–8860.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. J. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1137-m1138
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds