organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Iso­propyl-3-methyl-2-nitro­benzamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: tiandanbi@126.com

(Received 3 July 2009; accepted 12 August 2009; online 29 August 2009)

In the title compound, C11H14N2O3, the bond lengths and angles are within normal ranges. Weak inter­molecular N—H⋯O inter­actions link the mol­ecules into chains along the a axis. A non-classical intra­molecular C—H⋯O inter­action (nitro O atom and a H atom of the nearest methyl group) is found, forming a six-membered ring with a twisted conformation. This six-membered ring has a twisted conformation.

Related literature

For bond–length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background, see: Lahm et al. (2005[Lahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. J., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898-4906.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Orthorhombic, P b c a

  • a = 9.4230 (19) Å

  • b = 13.250 (3) Å

  • c = 20.041 (4) Å

  • V = 2502.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.991

  • 2260 measured reflections

  • 2260 independent reflections

  • 1135 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.174

  • S = 1.00

  • 2260 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.00 2.855 (3) 173
C11—H11A⋯O3 0.96 2.37 3.021 (5) 124
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound contains nitro– and acetylamino–groups, which can react with different groups to prepare various functional organic compounds as a fine organic intermediate (Lahm et al., 2005). We herein report the crystal structure.

In the title molecule (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). Intramolecular C—H···O interaction (Table 1) results in the formation of a six–membered ring (O3/N2/C10/C9/C11/H11A), having twisted conformation.

In the crystal structure, weak intermolecular N—H···O interactions (Table 1) link the molecules into chains along the a axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond–length data, see: Allen et al. (1987). For general background, see: Lahm et al. (2005).

Experimental top

N–isopropyl–3–methyl–2–nitrobenzamide were dissolved in DMF (50 mL). The solution was then poured to ice water. The crystalline product was isolated by filtration, washed with water (600 ml), dried and gave the product 1.8 g. The single crystals were obtained by evaporating the acetone slowly at room temperature for about 14 d.

Refinement top

The H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.96 and 0.98 Å for aromatic, methyl and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title molecular structure, with the atom–labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram for (I).
N-Isopropyl-3-methyl-2-nitrobenzamide top
Crystal data top
C11H14N2O3F(000) = 944
Mr = 222.24Dx = 1.180 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.4230 (19) Åθ = 10–13°
b = 13.250 (3) ŵ = 0.09 mm1
c = 20.041 (4) ÅT = 298 K
V = 2502.2 (9) Å3Needle, colourless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1135 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.974, Tmax = 0.991l = 024
2260 measured reflections3 standard reflections every 200 reflections
2260 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.06P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2260 reflectionsΔρmax = 0.22 e Å3
146 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (11)
Crystal data top
C11H14N2O3V = 2502.2 (9) Å3
Mr = 222.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4230 (19) ŵ = 0.09 mm1
b = 13.250 (3) ÅT = 298 K
c = 20.041 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1135 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.974, Tmax = 0.9913 standard reflections every 200 reflections
2260 measured reflections intensity decay: 1%
2260 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2260 reflectionsΔρmin = 0.16 e Å3
146 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1002 (2)0.4262 (2)0.21752 (13)0.0801 (9)
N10.0987 (3)0.4490 (2)0.27836 (16)0.0642 (9)
H1A0.18810.43670.28090.077*
C10.0066 (6)0.4504 (4)0.3892 (3)0.1265 (19)
H1B0.06990.39740.37560.190*
H1C0.07690.42150.40890.190*
H1D0.05330.49280.42120.190*
O20.0336 (3)0.51283 (19)0.09602 (15)0.0890 (10)
N20.0028 (3)0.4269 (2)0.08678 (16)0.0635 (8)
C20.1321 (5)0.5952 (3)0.3487 (2)0.1034 (16)
H2A0.15430.63450.30990.155*
H2B0.08710.63740.38140.155*
H2C0.21780.56750.36700.155*
O30.1088 (3)0.4024 (2)0.05598 (16)0.1007 (11)
C30.0342 (4)0.5115 (3)0.32994 (19)0.0676 (11)
H3A0.05230.54150.31140.081*
C40.0271 (3)0.4105 (2)0.22794 (18)0.0540 (9)
C50.1076 (3)0.3415 (2)0.18197 (18)0.0519 (9)
C60.1956 (4)0.2662 (3)0.2058 (2)0.0698 (11)
H6A0.21020.26000.25160.084*
C70.2619 (4)0.2004 (3)0.1630 (2)0.0793 (12)
H7A0.32060.15000.17980.095*
C80.2420 (4)0.2086 (3)0.0961 (2)0.0736 (11)
H8A0.28840.16360.06790.088*
C90.1545 (4)0.2819 (3)0.0684 (2)0.0642 (10)
C100.0889 (3)0.3463 (2)0.11363 (19)0.0540 (9)
C110.1371 (5)0.2899 (3)0.0058 (2)0.0973 (15)
H11A0.07430.34480.01600.146*
H11B0.22790.30200.02600.146*
H11C0.09810.22820.02280.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0298 (12)0.130 (2)0.0802 (19)0.0125 (14)0.0014 (13)0.0014 (17)
N10.0309 (14)0.083 (2)0.079 (2)0.0139 (15)0.0058 (16)0.0135 (18)
C10.146 (5)0.126 (4)0.107 (4)0.021 (4)0.047 (4)0.009 (4)
O20.096 (2)0.0519 (16)0.119 (3)0.0036 (16)0.0068 (18)0.0099 (17)
N20.0583 (19)0.064 (2)0.068 (2)0.0068 (18)0.0004 (17)0.0036 (17)
C20.106 (4)0.079 (3)0.125 (4)0.010 (3)0.028 (3)0.028 (3)
O30.078 (2)0.114 (2)0.111 (2)0.0197 (18)0.0431 (19)0.0240 (19)
C30.053 (2)0.084 (3)0.066 (3)0.019 (2)0.001 (2)0.005 (2)
C40.0306 (17)0.064 (2)0.068 (2)0.0026 (17)0.0016 (18)0.009 (2)
C50.0355 (17)0.049 (2)0.071 (2)0.0031 (16)0.0008 (17)0.0032 (19)
C60.058 (2)0.074 (3)0.077 (3)0.011 (2)0.002 (2)0.005 (2)
C70.076 (3)0.065 (3)0.096 (3)0.025 (2)0.003 (3)0.005 (3)
C80.070 (3)0.060 (2)0.091 (3)0.011 (2)0.014 (3)0.004 (2)
C90.061 (2)0.054 (2)0.078 (3)0.0006 (19)0.003 (2)0.000 (2)
C100.0430 (19)0.046 (2)0.073 (3)0.0032 (17)0.0025 (18)0.0047 (19)
C110.115 (4)0.097 (3)0.080 (3)0.018 (3)0.006 (3)0.010 (3)
Geometric parameters (Å, º) top
O1—C41.235 (3)C3—H3A0.9800
N1—C41.318 (4)C4—C51.503 (4)
N1—C31.457 (4)C5—C61.382 (4)
N1—H1A0.8600C5—C101.383 (5)
C1—C31.488 (6)C6—C71.375 (5)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—C81.357 (5)
C1—H1D0.9600C7—H7A0.9300
O2—N21.203 (3)C8—C91.391 (5)
N2—O31.218 (3)C8—H8A0.9300
N2—C101.475 (4)C9—C101.391 (5)
C2—C31.491 (5)C9—C111.499 (5)
C2—H2A0.9600C11—H11A0.9600
C2—H2B0.9600C11—H11B0.9600
C2—H2C0.9600C11—H11C0.9600
C4—N1—C3123.4 (3)N1—C4—C5116.6 (3)
C4—N1—H1A118.3C6—C5—C10116.9 (3)
C3—N1—H1A118.3C6—C5—C4122.0 (3)
C3—C1—H1B109.5C10—C5—C4120.9 (3)
C3—C1—H1C109.5C7—C6—C5120.9 (4)
H1B—C1—H1C109.5C7—C6—H6A119.5
C3—C1—H1D109.5C5—C6—H6A119.5
H1B—C1—H1D109.5C8—C7—C6120.2 (4)
H1C—C1—H1D109.5C8—C7—H7A119.9
O2—N2—O3124.3 (3)C6—C7—H7A119.9
O2—N2—C10117.5 (3)C7—C8—C9122.2 (4)
O3—N2—C10118.2 (3)C7—C8—H8A118.9
C3—C2—H2A109.5C9—C8—H8A118.9
C3—C2—H2B109.5C10—C9—C8115.6 (4)
H2A—C2—H2B109.5C10—C9—C11123.7 (4)
C3—C2—H2C109.5C8—C9—C11120.7 (4)
H2A—C2—H2C109.5C5—C10—C9124.1 (3)
H2B—C2—H2C109.5C5—C10—N2118.0 (3)
N1—C3—C1111.4 (3)C9—C10—N2117.8 (3)
N1—C3—C2110.1 (3)C9—C11—H11A109.5
C1—C3—C2111.3 (4)C9—C11—H11B109.5
N1—C3—H3A108.0H11A—C11—H11B109.5
C1—C3—H3A108.0C9—C11—H11C109.5
C2—C3—H3A108.0H11A—C11—H11C109.5
O1—C4—N1124.1 (3)H11B—C11—H11C109.5
O1—C4—C5119.3 (3)
C4—N1—C3—C195.0 (4)C7—C8—C9—C11178.9 (4)
C4—N1—C3—C2141.1 (4)C6—C5—C10—C91.1 (5)
C3—N1—C4—O13.0 (6)C4—C5—C10—C9176.8 (3)
C3—N1—C4—C5175.6 (3)C6—C5—C10—N2179.1 (3)
O1—C4—C5—C6132.9 (4)C4—C5—C10—N25.2 (5)
N1—C4—C5—C645.8 (4)C8—C9—C10—C50.8 (5)
O1—C4—C5—C1042.6 (5)C11—C9—C10—C5178.0 (4)
N1—C4—C5—C10138.7 (3)C8—C9—C10—N2178.8 (3)
C10—C5—C6—C70.6 (5)C11—C9—C10—N20.0 (5)
C4—C5—C6—C7176.3 (3)O2—N2—C10—C562.5 (4)
C5—C6—C7—C80.2 (6)O3—N2—C10—C5118.6 (4)
C6—C7—C8—C90.5 (6)O2—N2—C10—C9115.6 (4)
C7—C8—C9—C100.0 (6)O3—N2—C10—C963.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.855 (3)173
C11—H11A···O30.962.373.021 (5)124
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.4230 (19), 13.250 (3), 20.041 (4)
V3)2502.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2260, 2260, 1135
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.174, 1.00
No. of reflections2260
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.855 (3)173.00
C11—H11A···O30.962.373.021 (5)124.00
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLahm, G. P., Selby, T. P., Freudenberger, J. H., Stevenson, T. M., Myers, B. J., Seburyamo, G., Smith, B. K., Flexner, L., Clark, C. E. & Cordova, D. (2005). Bioorg. Med. Chem. Lett. 15, 4898–4906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds