organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2131-o2132

N′-Benzoyl-N-tert-butyl-2-chloro-N′-{[3-(6-chloro-3-pyrid­ylmethyl)-2-nitrimino­imidazolidin-1-yl]sulfan­yl}benzo­hydrazide

aChemistry and Biology College, Yantai University, Yantai 264005, Shandong Province, People's Republic of China, bState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China, and cCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China
*Correspondence e-mail: shangjian@mail.nankai.edu.cn

(Received 13 June 2009; accepted 22 July 2009; online 12 August 2009)

In the title compound, C27H27Cl2N7O4S, the amide groups bearing the N—S group and the tert-butyl group have strans conformations. The steric size of the tert-butyl and [(6-chloro-3-pyrid­yl)meth­yl]imidazolidin-2-yl­idene groups cause the 2-chloro­benzoyl group and the benzyol group to be directed away from one another, forming a dihedral angle of 60.62 (17)°. The central N—N bond adopts a gauche conformation with a C—N—N—C torsion angle of −79.1 (2)°.

Related literature

1-tert-Butyl-1,2-diacyl­hydrazines are a new class of insect growth regulators, which have been found to mimic the action of 20-hydroxyecdysone in activating the ecdysone receptor, which leads to lethal premature moulting, see: Wing (1988[Wing, K. D. (1988). Science, 241, 467-469.], 1995[Wing, K. D. (1995). USPTO Patent No. 5 424 333.]); Wing et al. (1988[Wing, K. D., Slawecki, R. A. & Carlson, G. R. (1988). Science, 241, 470-472.]). 1-tert–Butyl-2-(4-ethyl­benzo­yl)-1-(3,5-dimethyl­benzo­yl) hydrazine (tebufenozide, RH-5992) was the first non-steroidal ecdysone agonist to be available commercially as a lepidopteran-specific insecticide, see: Dhadialla & Jansson (1999[Dhadialla, T. S. & Jansson, R. K. (1999). Pestic. Sci. 55, 357-359.]). At present, three further structural analogues are available, viz. methoxy­fenozide (RH-2485), halofenozide (RH-0345) and chromafenozide (ANS-118), see: Carlson et al. (2001[Carlson, G. R., Dhadialla, T. S. & Hunter, R. (2001). Pest. Mang. Sci. 57, 115-119.]); Yanagi et al. (2000[Yanagi, M., Watanabe, T. & Masui, A. (2000). Proc. Brighton Crop. Prot. Conf. BCPC, Farnham, Surrey, UK, p. 27.]). The gauche conformation of the N—N bond has been observed in other hydrazine derivatives, see: Chan et al. (1990[Chan, T. H., Ali, A. & Britten, J. F. (1990). Can. J. Chem. 68, 1178-1181.]); Wolfe (1972[Wolfe, S. (1972). Acc. Chem. Res. 5, 102-111.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27Cl2N7O4S

  • Mr = 616.52

  • Monoclinic, P 21 /n

  • a = 11.2271 (19) Å

  • b = 10.1360 (17) Å

  • c = 25.660 (4) Å

  • β = 102.233 (2)°

  • V = 2853.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.32 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 1.000 (expected range = 0.745–0.966)

  • 15046 measured reflections

  • 5028 independent reflections

  • 3977 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.06

  • 5028 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-tert-butyl-1,2-diacylhydrazines are a new class of insect growth regulators, which have been found to mimic the action of 20-Hydroxyecdysone in activating the ecdysone receptor, which leads to lethal premature moulting (Wing, 1988; Wing et al., 1988; Wing, 1995). Among nonsteroidal ecdysone agonists, 1-tert-butyl-2-(4-ethylbenzoyl)-1-(3,5-dimethylbenzoyl) hydrazine (tebufenozide, RH-5992) was the first to be commercialized as a lepidopteran-specific insecticide, with a low toxicity profile towards mammals, birds and fish, as well as towards non-target arthropods such as insect pollinators, predators, and parasitoids (Dhadialla & Jansson, 1999). At present, another three new structural analogues: methoxyfenozide (RH-2485), halofenozide (RH-0345) and chromafenozide (ANS-118) have been commercialized (Carlson et al., 2001; Yanagi et al., 2000). Therefore, in a search for new insect growth regulators with improved biological properties and different activity spectrum, we synthesized the title compound.

The molecular structure of the title compound is shown in Fig. 1, and the crystal packing is illustrated in Fig. 2. The 2-chlorobenzoyl phenyl ring (C1-C6) is inclined to the benzyol phenyl ring (C13-C18) by 60.62 (17)°. The two carbonyl groups to which they are bonded are not coplanar with the phenyl rings. The torsion angles defined by C5—C6—C7—O1 and O2—C12—C13—C14 are -93.0 (3) and -116.9 (3)°, respectively. While the two amide functions adopt the expected planar structures, the amide bearing the N2—S1 bond has a s-cis conformation (N1—N2—C12—O2 = 10.9 (3)°), and that bearing the 1-tert-butyl group also has a s-cis conformation (N2—N1—C7—O1 = -1.8 (3)°). Clearly, this configurational arrangement is due to the size of the tert-butyl and the ((6-chloro-3-pyridyl)methyl)imidazolidin-2-ylidene substituents. The N1—N2 bond adopts a gauche conformation with a torsion angle of -79.1 (2)° for C7—N1—N2—C12. Such a gauche effect has been observed for other hydrazine derivatives (Chan et al., 1990; Wolfe, 1972).

Related literature top

1-tert-Butyl-1,2-diacylhydrazines are a new class of insect growth regulators, which have been found to mimic the action of 20-yydroxyecdysone in activating the ecdysone receptor, which leads to lethal premature moulting, see: Wing (1988, 1995); Wing et al. (1988). 1-tert–Butyl-2-(4-ethylbenzoyl)-1-(3,5-dimethylbenzoyl) hydrazine (tebufenozide, RH-5992) was the first non-steroidal ecdysone agonist to be available commercially as a lepidopteran-specific insecticide, see: Dhadialla & Jansson (1999). At present, three further structural analogues are available: methoxyfenozide (RH-2485), halofenozide (RH-0345) and chromafenozide (ANS-118), see: Carlson et al. (2001); Yanagi et al. (2000). The gauche conformation of the N—N bond has been observed in other hydrazine derivatives, see: Chan et al. (1990); Wolfe (1972).

Experimental top

To a stirred solution of sulfur dichloride (0.08 mol) and dichloromethane (15 ml) was added dropwise a solution of pyridine (0.008 mol) in dichloromethane (5 ml) at 283 K. A solution of 1-tert-butyl-1- (2-chlorobenzoyl)-2-benzoylhydrazine (0.007 mol) in dichloromethane (5 ml) was then added at 283 K. This mixture was stirred at rt for 4 h and then added dropwise to imidacloprid sodium (0.007 mol). After the addition was complete, the reaction mixture was stirred for 6 h at rt. The solid obtained was then filtered off and the filtrate concentrated under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether (60–90), dichloromethane and ethyl acetate (20:1:1 by volume) as the eluent: Yield 54%. Crystals suitable for X-ray analysis were obtained from a solution in isopropyl alcohol, by slow evaporation at room temperature.

Refinement top

All the H-atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 - 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level (H-atoms have been omitted for clarity).
[Figure 2] Fig. 2. A view along the b axis, of the crystal packing of the title compound.
N'-Benzoyl-N-tert-butyl-2-chloro-N'- {[3-(6-chloro-3-pyridylmethyl)-2-nitriminoimidazolidin-1- yl]sulfanyl}benzohydrazide top
Crystal data top
C27H27Cl2N7O4SF(000) = 1280
Mr = 616.52Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4468 reflections
a = 11.2271 (19) Åθ = 2.6–24.9°
b = 10.1360 (17) ŵ = 0.35 mm1
c = 25.660 (4) ÅT = 293 K
β = 102.233 (2)°Prism, colorless
V = 2853.7 (8) Å30.32 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5028 independent reflections
Radiation source: fine-focus sealed tube3977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.771, Tmax = 1.000k = 129
15046 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0698P)2 + 1.7665P]
where P = (Fo2 + 2Fc2)/3
5028 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C27H27Cl2N7O4SV = 2853.7 (8) Å3
Mr = 616.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2271 (19) ŵ = 0.35 mm1
b = 10.1360 (17) ÅT = 293 K
c = 25.660 (4) Å0.32 × 0.12 × 0.10 mm
β = 102.233 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3977 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.021
15046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.78 e Å3
5028 reflectionsΔρmin = 0.45 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00213 (9)0.49776 (9)0.40638 (4)0.0728 (3)
Cl20.11702 (9)0.58796 (9)0.15026 (4)0.0810 (3)
S10.14276 (6)0.07999 (6)0.09665 (2)0.03344 (17)
O10.06429 (15)0.32169 (19)0.17809 (6)0.0420 (4)
O20.11152 (17)0.45234 (18)0.07819 (8)0.0491 (5)
O30.0674 (2)0.1707 (2)0.14149 (9)0.0608 (6)
O40.1101 (2)0.0950 (2)0.14492 (11)0.0752 (7)
N10.03379 (17)0.2563 (2)0.09591 (7)0.0325 (4)
N20.08279 (17)0.23245 (19)0.08582 (7)0.0310 (4)
N30.21131 (18)0.0735 (2)0.16139 (7)0.0333 (4)
N40.2211 (2)0.0837 (2)0.24814 (8)0.0418 (5)
N50.0473 (2)0.0140 (2)0.20121 (8)0.0439 (5)
N60.0006 (2)0.0955 (2)0.15925 (9)0.0476 (6)
N70.1465 (2)0.3052 (3)0.40109 (9)0.0525 (6)
C10.1896 (3)0.4535 (3)0.17016 (13)0.0583 (8)
C20.2914 (3)0.4740 (5)0.19289 (16)0.0796 (11)
H20.32070.55890.19580.095*
C30.3459 (4)0.3701 (5)0.21039 (17)0.0872 (13)
H30.41210.38410.22620.105*
C40.3057 (3)0.2426 (5)0.20542 (15)0.0795 (11)
H40.34680.17270.21710.095*
C50.2077 (2)0.2171 (4)0.18388 (12)0.0620 (9)
H50.17920.13140.18200.074*
C60.1483 (2)0.3285 (3)0.16371 (10)0.0429 (6)
C70.0311 (2)0.3051 (2)0.14593 (9)0.0333 (5)
C80.1401 (2)0.2467 (3)0.04779 (9)0.0387 (6)
C90.2336 (3)0.1494 (4)0.05798 (15)0.0883 (14)
H9A0.27440.18460.08420.132*
H9B0.19410.06810.07080.132*
H9C0.29200.13340.02540.132*
C100.1969 (3)0.3813 (3)0.03440 (14)0.0670 (9)
H10A0.25870.37560.00230.100*
H10B0.13520.44270.02930.100*
H10C0.23270.41100.06310.100*
C110.0898 (3)0.2030 (5)0.00012 (13)0.0930 (15)
H11A0.05380.11710.00660.139*
H11B0.02920.26470.00600.139*
H11C0.15490.19960.03110.139*
C120.1470 (2)0.3426 (2)0.07288 (9)0.0345 (5)
C130.2546 (2)0.3156 (3)0.04891 (10)0.0387 (6)
C140.2425 (3)0.2453 (3)0.00197 (12)0.0538 (7)
H140.16920.20350.01240.065*
C150.3376 (3)0.2368 (4)0.02354 (13)0.0677 (9)
H150.32780.19150.05570.081*
C160.4471 (3)0.2949 (4)0.00196 (15)0.0699 (10)
H160.51230.28700.01880.084*
C170.4599 (3)0.3646 (4)0.04451 (15)0.0670 (9)
H170.53420.40410.05920.080*
C180.3636 (2)0.3768 (3)0.06963 (12)0.0504 (7)
H180.37240.42650.10070.061*
C190.3185 (2)0.1561 (3)0.18253 (10)0.0453 (6)
H19A0.30660.24530.16870.054*
H19B0.39120.11950.17330.054*
C200.3281 (3)0.1541 (4)0.24168 (12)0.0633 (9)
H20A0.40150.10880.25960.076*
H20B0.32860.24290.25580.076*
C210.1539 (2)0.0411 (2)0.20220 (9)0.0346 (5)
C220.1974 (3)0.0529 (3)0.30041 (10)0.0506 (7)
H22A0.27310.02670.32400.061*
H22B0.14170.02120.29710.061*
C230.1436 (2)0.1681 (3)0.32484 (9)0.0400 (6)
C240.1910 (3)0.2073 (3)0.37612 (10)0.0467 (7)
H240.25900.16260.39490.056*
C250.0517 (3)0.3670 (3)0.37382 (11)0.0464 (7)
C260.0045 (3)0.3379 (4)0.32266 (13)0.0657 (9)
H260.07240.38490.30510.079*
C270.0435 (3)0.2360 (3)0.29801 (12)0.0628 (9)
H270.00790.21320.26310.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0906 (6)0.0576 (5)0.0834 (6)0.0160 (4)0.0483 (5)0.0003 (4)
Cl20.0914 (7)0.0443 (5)0.1006 (7)0.0010 (4)0.0053 (5)0.0035 (4)
S10.0415 (3)0.0298 (3)0.0286 (3)0.0009 (3)0.0063 (2)0.0033 (2)
O10.0343 (9)0.0553 (12)0.0340 (9)0.0017 (8)0.0014 (7)0.0058 (8)
O20.0548 (11)0.0321 (11)0.0659 (13)0.0003 (9)0.0254 (10)0.0003 (9)
O30.0806 (15)0.0374 (12)0.0652 (13)0.0030 (11)0.0173 (11)0.0078 (10)
O40.0554 (14)0.0655 (16)0.0953 (18)0.0118 (11)0.0055 (13)0.0019 (13)
N10.0277 (10)0.0387 (11)0.0301 (10)0.0007 (9)0.0041 (8)0.0005 (8)
N20.0311 (10)0.0308 (11)0.0314 (10)0.0001 (8)0.0074 (8)0.0010 (8)
N30.0355 (10)0.0325 (11)0.0309 (10)0.0015 (9)0.0043 (8)0.0018 (8)
N40.0521 (13)0.0433 (13)0.0282 (10)0.0020 (10)0.0045 (9)0.0005 (9)
N50.0522 (14)0.0419 (13)0.0392 (12)0.0072 (11)0.0133 (10)0.0006 (10)
N60.0571 (15)0.0339 (13)0.0494 (13)0.0090 (11)0.0056 (12)0.0077 (10)
N70.0586 (15)0.0557 (15)0.0410 (12)0.0078 (12)0.0057 (11)0.0084 (11)
C10.0517 (17)0.059 (2)0.0607 (19)0.0063 (15)0.0032 (14)0.0145 (15)
C20.063 (2)0.097 (3)0.079 (2)0.018 (2)0.0165 (19)0.030 (2)
C30.062 (2)0.121 (4)0.085 (3)0.017 (2)0.029 (2)0.018 (3)
C40.063 (2)0.109 (3)0.070 (2)0.012 (2)0.0231 (18)0.011 (2)
C50.0303 (14)0.093 (3)0.0626 (19)0.0023 (15)0.0103 (13)0.0202 (18)
C60.0368 (14)0.0541 (17)0.0365 (13)0.0026 (12)0.0052 (11)0.0059 (12)
C70.0357 (13)0.0306 (13)0.0335 (12)0.0004 (10)0.0071 (10)0.0015 (10)
C80.0350 (13)0.0464 (15)0.0307 (12)0.0004 (11)0.0019 (10)0.0003 (11)
C90.080 (2)0.093 (3)0.073 (2)0.048 (2)0.0287 (19)0.026 (2)
C100.0602 (19)0.063 (2)0.066 (2)0.0062 (16)0.0140 (16)0.0131 (16)
C110.064 (2)0.161 (4)0.0438 (18)0.030 (2)0.0115 (16)0.039 (2)
C120.0366 (13)0.0347 (14)0.0323 (12)0.0034 (11)0.0071 (10)0.0013 (10)
C130.0420 (14)0.0359 (14)0.0407 (13)0.0006 (11)0.0141 (11)0.0046 (11)
C140.0537 (18)0.060 (2)0.0520 (17)0.0064 (14)0.0199 (14)0.0092 (14)
C150.071 (2)0.084 (3)0.0565 (19)0.0039 (19)0.0341 (17)0.0095 (17)
C160.060 (2)0.081 (3)0.081 (2)0.0067 (18)0.0424 (18)0.005 (2)
C170.0424 (17)0.079 (2)0.084 (2)0.0078 (16)0.0235 (16)0.003 (2)
C180.0431 (15)0.0540 (18)0.0561 (17)0.0040 (13)0.0150 (13)0.0050 (14)
C190.0390 (14)0.0513 (17)0.0442 (15)0.0039 (12)0.0054 (11)0.0089 (12)
C200.062 (2)0.078 (2)0.0435 (16)0.0180 (17)0.0028 (14)0.0057 (15)
C210.0444 (14)0.0271 (12)0.0311 (12)0.0074 (10)0.0054 (10)0.0025 (9)
C220.076 (2)0.0428 (16)0.0308 (13)0.0079 (14)0.0067 (13)0.0051 (11)
C230.0505 (15)0.0385 (15)0.0303 (12)0.0006 (12)0.0072 (11)0.0032 (10)
C240.0507 (16)0.0485 (17)0.0375 (14)0.0095 (13)0.0020 (12)0.0009 (12)
C250.0529 (16)0.0415 (15)0.0501 (16)0.0011 (13)0.0228 (13)0.0040 (12)
C260.063 (2)0.073 (2)0.0566 (19)0.0275 (17)0.0018 (15)0.0078 (17)
C270.072 (2)0.073 (2)0.0358 (15)0.0169 (17)0.0070 (14)0.0010 (14)
Geometric parameters (Å, º) top
Cl1—C251.742 (3)C9—H9B0.9600
Cl2—C11.721 (4)C9—H9C0.9600
S1—N31.6777 (19)C10—H10A0.9600
S1—N21.685 (2)C10—H10B0.9600
O1—C71.218 (3)C10—H10C0.9600
O2—C121.199 (3)C11—H11A0.9600
O3—N61.224 (3)C11—H11B0.9600
O4—N61.218 (3)C11—H11C0.9600
N1—C71.370 (3)C12—C131.493 (3)
N1—N21.408 (3)C13—C181.375 (4)
N1—C81.527 (3)C13—C141.381 (4)
N2—C121.407 (3)C14—C151.368 (4)
N3—C211.381 (3)C14—H140.9300
N3—C191.471 (3)C15—C161.370 (5)
N4—C211.330 (3)C15—H150.9300
N4—C201.435 (4)C16—C171.367 (5)
N4—C221.456 (3)C16—H160.9300
N5—C211.315 (3)C17—C181.377 (4)
N5—N61.370 (3)C17—H170.9300
N7—C251.304 (4)C18—H180.9300
N7—C241.334 (4)C19—C201.499 (4)
C1—C61.371 (4)C19—H19A0.9700
C1—C21.403 (5)C19—H19B0.9700
C2—C31.342 (6)C20—H20A0.9700
C2—H20.9300C20—H20B0.9700
C3—C41.384 (6)C22—C231.510 (4)
C3—H30.9300C22—H22A0.9700
C4—C51.356 (5)C22—H22B0.9700
C4—H40.9300C23—C241.370 (4)
C5—C61.461 (5)C23—C271.372 (4)
C5—H50.9300C24—H240.9300
C6—C71.500 (3)C25—C261.363 (4)
C8—C91.503 (4)C26—C271.379 (5)
C8—C101.515 (4)C26—H260.9300
C8—C111.523 (4)C27—H270.9300
C9—H9A0.9600
N3—S1—N2106.41 (10)C8—C11—H11C109.5
C7—N1—N2113.44 (18)H11A—C11—H11C109.5
C7—N1—C8129.7 (2)H11B—C11—H11C109.5
N2—N1—C8115.95 (18)O2—C12—N2120.7 (2)
C12—N2—N1116.74 (19)O2—C12—C13122.3 (2)
C12—N2—S1124.08 (16)N2—C12—C13116.8 (2)
N1—N2—S1118.79 (15)C18—C13—C14119.0 (3)
C21—N3—C19109.44 (19)C18—C13—C12119.3 (2)
C21—N3—S1124.76 (16)C14—C13—C12121.0 (2)
C19—N3—S1120.71 (17)C15—C14—C13120.5 (3)
C21—N4—C20113.0 (2)C15—C14—H14119.7
C21—N4—C22124.5 (2)C13—C14—H14119.7
C20—N4—C22122.2 (2)C14—C15—C16120.3 (3)
C21—N5—N6117.8 (2)C14—C15—H15119.9
O4—N6—O3123.8 (3)C16—C15—H15119.9
O4—N6—N5115.5 (3)C17—C16—C15119.7 (3)
O3—N6—N5120.4 (2)C17—C16—H16120.2
C25—N7—C24116.5 (2)C15—C16—H16120.2
C6—C1—C2120.9 (3)C16—C17—C18120.4 (3)
C6—C1—Cl2120.2 (2)C16—C17—H17119.8
C2—C1—Cl2119.0 (3)C18—C17—H17119.8
C3—C2—C1119.5 (4)C13—C18—C17120.1 (3)
C3—C2—H2120.3C13—C18—H18119.9
C1—C2—H2120.3C17—C18—H18119.9
C2—C3—C4121.4 (4)N3—C19—C20104.1 (2)
C2—C3—H3119.3N3—C19—H19A110.9
C4—C3—H3119.3C20—C19—H19A110.9
C5—C4—C3121.6 (4)N3—C19—H19B110.9
C5—C4—H4119.2C20—C19—H19B110.9
C3—C4—H4119.2H19A—C19—H19B109.0
C4—C5—C6117.9 (3)N4—C20—C19104.0 (2)
C4—C5—H5121.1N4—C20—H20A111.0
C6—C5—H5121.1C19—C20—H20A111.0
C1—C6—C5118.7 (3)N4—C20—H20B111.0
C1—C6—C7121.6 (3)C19—C20—H20B111.0
C5—C6—C7118.8 (2)H20A—C20—H20B109.0
O1—C7—N1121.8 (2)N5—C21—N4119.9 (2)
O1—C7—C6118.3 (2)N5—C21—N3131.0 (2)
N1—C7—C6119.7 (2)N4—C21—N3109.0 (2)
C9—C8—C10110.7 (3)N4—C22—C23112.6 (2)
C9—C8—C11110.0 (3)N4—C22—H22A109.1
C10—C8—C11106.8 (3)C23—C22—H22A109.1
C9—C8—N1110.9 (2)N4—C22—H22B109.1
C10—C8—N1110.2 (2)C23—C22—H22B109.1
C11—C8—N1108.2 (2)H22A—C22—H22B107.8
C8—C9—H9A109.5C24—C23—C27116.5 (3)
C8—C9—H9B109.5C24—C23—C22121.0 (2)
H9A—C9—H9B109.5C27—C23—C22122.5 (2)
C8—C9—H9C109.5N7—C24—C23124.7 (3)
H9A—C9—H9C109.5N7—C24—H24117.7
H9B—C9—H9C109.5C23—C24—H24117.7
C8—C10—H10A109.5N7—C25—C26124.9 (3)
C8—C10—H10B109.5N7—C25—Cl1115.8 (2)
H10A—C10—H10B109.5C26—C25—Cl1119.3 (2)
C8—C10—H10C109.5C25—C26—C27117.2 (3)
H10A—C10—H10C109.5C25—C26—H26121.4
H10B—C10—H10C109.5C27—C26—H26121.4
C8—C11—H11A109.5C23—C27—C26120.3 (3)
C8—C11—H11B109.5C23—C27—H27119.9
H11A—C11—H11B109.5C26—C27—H27119.9
C7—N1—N2—C1279.1 (2)N2—C12—C13—C18130.5 (3)
C8—N1—N2—C1291.0 (2)O2—C12—C13—C14116.9 (3)
C7—N1—N2—S194.0 (2)N2—C12—C13—C1458.8 (3)
C8—N1—N2—S195.8 (2)C18—C13—C14—C150.0 (5)
N3—S1—N2—C1286.82 (19)C12—C13—C14—C15170.8 (3)
N3—S1—N2—N185.75 (17)C13—C14—C15—C161.8 (5)
N2—S1—N3—C2186.2 (2)C14—C15—C16—C171.8 (6)
N2—S1—N3—C1965.8 (2)C15—C16—C17—C180.1 (6)
C21—N5—N6—O4146.8 (2)C14—C13—C18—C171.8 (4)
C21—N5—N6—O339.2 (3)C12—C13—C18—C17172.8 (3)
C6—C1—C2—C32.6 (5)C16—C17—C18—C131.9 (5)
Cl2—C1—C2—C3177.5 (3)C21—N3—C19—C207.4 (3)
C1—C2—C3—C41.5 (6)S1—N3—C19—C20163.2 (2)
C2—C3—C4—C51.7 (6)C21—N4—C20—C192.2 (3)
C3—C4—C5—C62.7 (5)C22—N4—C20—C19176.7 (2)
C2—C1—C6—C53.6 (4)N3—C19—C20—N45.6 (3)
Cl2—C1—C6—C5176.5 (2)N6—N5—C21—N4157.9 (2)
C2—C1—C6—C7172.2 (3)N6—N5—C21—N327.1 (4)
Cl2—C1—C6—C77.8 (4)C20—N4—C21—N5173.5 (3)
C4—C5—C6—C13.6 (4)C22—N4—C21—N512.1 (4)
C4—C5—C6—C7172.6 (3)C20—N4—C21—N32.5 (3)
N2—N1—C7—O11.8 (3)C22—N4—C21—N3171.9 (2)
C8—N1—C7—O1170.3 (2)C19—N3—C21—N5169.1 (3)
N2—N1—C7—C6176.7 (2)S1—N3—C21—N514.4 (4)
C8—N1—C7—C614.9 (4)C19—N3—C21—N46.3 (3)
C1—C6—C7—O175.6 (3)S1—N3—C21—N4160.98 (17)
C5—C6—C7—O193.0 (3)C21—N4—C22—C23105.2 (3)
C1—C6—C7—N1109.4 (3)C20—N4—C22—C2380.9 (3)
C5—C6—C7—N182.0 (3)N4—C22—C23—C24130.6 (3)
C7—N1—C8—C967.4 (4)N4—C22—C23—C2751.4 (4)
N2—N1—C8—C9124.4 (3)C25—N7—C24—C230.5 (5)
C7—N1—C8—C1055.6 (3)C27—C23—C24—N70.2 (5)
N2—N1—C8—C10112.7 (3)C22—C23—C24—N7177.9 (3)
C7—N1—C8—C11172.0 (3)C24—N7—C25—C260.6 (5)
N2—N1—C8—C113.7 (3)C24—N7—C25—Cl1178.1 (2)
N1—N2—C12—O210.9 (3)N7—C25—C26—C270.4 (5)
S1—N2—C12—O2161.8 (2)Cl1—C25—C26—C27178.2 (3)
N1—N2—C12—C13164.91 (19)C24—C23—C27—C260.1 (5)
S1—N2—C12—C1322.4 (3)C22—C23—C27—C26178.0 (3)
O2—C12—C13—C1853.8 (4)C25—C26—C27—C230.1 (5)

Experimental details

Crystal data
Chemical formulaC27H27Cl2N7O4S
Mr616.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.2271 (19), 10.1360 (17), 25.660 (4)
β (°) 102.233 (2)
V3)2853.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.32 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.771, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15046, 5028, 3977
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.06
No. of reflections5028
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.45

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Key Project for Basic Research (2003CB114400), the National Natural Science Foundation of China (20202005) and the Foundation for the Authors of National Excellent Doctoral Dissertations of P. R. China (200255).

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlson, G. R., Dhadialla, T. S. & Hunter, R. (2001). Pest. Mang. Sci. 57, 115–119.  Web of Science CrossRef CAS Google Scholar
First citationChan, T. H., Ali, A. & Britten, J. F. (1990). Can. J. Chem. 68, 1178–1181.  CrossRef CAS Web of Science Google Scholar
First citationDhadialla, T. S. & Jansson, R. K. (1999). Pestic. Sci. 55, 357–359.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWing, K. D. (1988). Science, 241, 467–469.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWing, K. D. (1995). USPTO Patent No. 5 424 333.  Google Scholar
First citationWing, K. D., Slawecki, R. A. & Carlson, G. R. (1988). Science, 241, 470–472.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWolfe, S. (1972). Acc. Chem. Res. 5, 102–111.  CrossRef CAS Web of Science Google Scholar
First citationYanagi, M., Watanabe, T. & Masui, A. (2000). Proc. Brighton Crop. Prot. Conf. BCPC, Farnham, Surrey, UK, p. 27.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2131-o2132
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds