organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-4-hy­droxy­phenyl acrylate

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, and bDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 14 July 2009; accepted 13 August 2009; online 29 August 2009)

In the title compound, C12H12O4, the hydr­oxy O and the C and O atoms of the acetyl group are almost coplanar [maximum deviation = 0.0356 (1) Å] with the benzene ring. The dihedral angle between the benzene ring and the plane through the non-H atoms of the methacrylo­yloxy group is 86.1 (1)°. In the crystal structure, mol­ecules are linked by two C—H⋯O hydrogen bonds, forming dimers with graph-set descriptor R22(16). A strong intra­molecular O—H⋯O hydrogen bond is also observed.

Related literature

For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). For graph-set notation, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological properties of acetophenone derivatives, see Favier et al. (1998[Favier, L., Tonn, C., Guerreiro, E., Rotelli, A. & Pelzer, L. (1998). Planta Med. 64, 657-662.]); Sala et al. (2001[Sala, A., Recio, M. C., Giner, R. M., Manez, S. & Rios, J. L. (2001). J. Nat. Prod. 64, 1360-1362.]); Suksamrarn et al. (1997[Suksamrarn, A., Eiamong, S., Piyachaturawat, P. & Byrnes, L. T. (1997). Phytochemistry, 45, 103-109.]). Acetophenones are useful synthons for the preparation of a wide variety of polyphenolic compounds such as chalcones and flavones, see Parmar et al. (1996[Parmar, V. S., Bisht, K. S., Rajni, J., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A., Pati, H. N., Berghe, D., Vanden, D. & Vlientinck, A. J. (1996). Indian J. Chem. Sect. B, 35, 220-232.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12O4

  • Mr = 220.22

  • Monoclinic, P 21 /n

  • a = 8.8335 (3) Å

  • b = 11.9320 (3) Å

  • c = 11.3295 (3) Å

  • β = 111.277 (2)°

  • V = 1112.75 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.17 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.983

  • 14184 measured reflections

  • 3437 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.161

  • S = 1.05

  • 3437 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.82 2.546 (2) 146
C5—H5A⋯O1i 0.93 2.57 3.483 (2) 166
C11—H11B⋯O4i 0.96 2.57 3.336 (2) 137
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acetophenones are useful synthons for the preparation of a wide variety of polyphenolic compounds such as chalcones and flavones (Parmar et al., 1996). Acetophenone derivatives have shown many interesting biological properties such as anti-inflammatory (Sala et al., 2001; Favier et al., 1998), cytotoxic and choleretic (Suksamrarn et al., 1997) activities. Acetophenone is also used as a solvent for cellulose ethers and esters for the production of alcohol-soluble resins. 2-Hydroxy-4- methoxybenzophenone is used on an industrial scale as an ultraviolet absorber in cosmetics and plastics. 2-Hydroxyl-4,6-dimethoxyacetophenone was isolated from the leaves of the peperomia glabella family. Peperomia glabella is an epiphyte used in Venezuelan folk medicine as an anti-asthmatic.

The bond lengths C7—C8, C9—C10 and C10—C11 [1.495 (1), 1.476 (2) and 1.479 (1) Å] are comparable with standard values (Allen et al., 1987). The carbonyl group bond length C7—O1 [1.235 (2) Å] is longer than C9—O4 [1.185 (2) Å]. This may be a result of O1 being involved in intramolecular and intermolecular hydrogen bonds; this would tend to lengthen the C7—O1 bond.

O2, C7, O1 and C8 are coplanar with the benzene ring. The angle between the benzene ring and the plane through O3, C9, O4, C10, C11 and C12 is 86.1 (1)° (Fig. 1).

The molecular structure of the compound is stabilized by a weak intramolecular O—H···O hydrogen bond and the crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The molecule at (x, y, z) is linked to the symmetry-related molecule at (-1/2 + x, 1/2 - y, -1/2 + z), forming a dimer with graph set descriptor R22(16) (Bernstein et al., 1995). Propagation of these dimer units generates an infinite molecular chain along the crystallographic c axis. Fig. 2 shows the crystal packing of the compound, viewed approximately down the a axis.

Related literature top

For standard bond-length data, see: Allen et al. (1987). For graph-set notation, see Bernstein et al. (1995). For the biological properties of acetophenone derivatives, see Favier et al. (1998); Sala et al. (2001); Suksamrarn et al. (1997). Acetophenones are useful synthons for the preparation of a wide variety of polyphenolic compounds such as chalcones and flavones, see Parmar et al. (1996).

Experimental top

2,5-Dihydroxyacetophenone (26.31 mmol, 4.0 g), K2CO3 (31.55 mmol, 4.36 g) and 150 ml of dry acetone were taken up in a 250 ml round bottomed flask and the temperature was maintained at 0 °C. A solution of methacryloyl chloride (26.80 mmol, 2.8 ml) in 20 ml of dry acetone was then added dropwise to the mixture, with constant stirring for 30 min. After the addition was complete the reaction mixture was stirred for another 6 h. The salt formed during the reaction was filtered and the filtrate was washed with water and dried over anhydrous MgSO4. The filtrate was concentrated under reduced pressure and the crude product was purified by column chromatography (silica) using a hexane/ethyl acetate mixture (90:10). The product was collected and recrystallized from chloroform to give a crystalline white solid. Yield: 4.5 g (77%); Mp: 65–66 °C.

Refinement top

The H atoms attached to C12 were located in a difference map and refined freely. Other H atoms were positioned geometrically and were treated as riding on their parent atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å; Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for aromatic H atoms. O—H = 0.82 Å and the isotropic dispacement parameter was refined. The methylene group was free to rotate, but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with dispacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. Dashed lines indicate hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted.
3-Acetyl-4-hydroxyphenyl acrylate top
Crystal data top
C12H12O4F(000) = 464
Mr = 220.22Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3437 reflections
a = 8.8335 (3) Åθ = 2.5–30.6°
b = 11.9320 (3) ŵ = 0.10 mm1
c = 11.3295 (3) ÅT = 293 K
β = 111.277 (2)°Block, colourless
V = 1112.75 (6) Å30.25 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3437 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 30.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.976, Tmax = 0.983k = 1712
14184 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1247P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3437 reflectionsΔρmax = 0.21 e Å3
155 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (4)
Crystal data top
C12H12O4V = 1112.75 (6) Å3
Mr = 220.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8335 (3) ŵ = 0.10 mm1
b = 11.9320 (3) ÅT = 293 K
c = 11.3295 (3) Å0.25 × 0.17 × 0.17 mm
β = 111.277 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2080 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.026
14184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
3437 reflectionsΔρmin = 0.17 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79745 (16)0.06020 (12)1.12189 (13)0.0535 (3)
C20.82796 (18)0.01422 (13)1.03977 (15)0.0636 (4)
H2A0.91480.06381.07020.076*
C30.73129 (18)0.01579 (13)0.91355 (14)0.0610 (4)
H3A0.75340.06530.85840.073*
C40.60112 (16)0.05669 (12)0.86937 (12)0.0508 (3)
C50.56645 (15)0.12991 (10)0.94908 (12)0.0468 (3)
H5A0.47690.17710.91770.056*
C60.66479 (15)0.13418 (10)1.07749 (11)0.0455 (3)
C70.63168 (17)0.21260 (12)1.16503 (13)0.0563 (4)
C80.4888 (2)0.28945 (14)1.11997 (18)0.0747 (5)
H8A0.48600.33441.18940.112*
H8B0.39080.24611.08690.112*
H8C0.49770.33721.05460.112*
C90.51842 (17)0.12501 (12)0.66068 (12)0.0539 (3)
C100.39516 (16)0.11754 (12)0.53150 (12)0.0524 (3)
C110.4200 (2)0.19460 (15)0.43794 (15)0.0741 (5)
H11A0.41970.27060.46570.111*
H11B0.33410.18460.35730.111*
H11C0.52250.17860.43010.111*
C120.2721 (2)0.04683 (17)0.50538 (18)0.0744 (5)
O10.72227 (16)0.21560 (11)1.27744 (10)0.0806 (4)
O20.89890 (14)0.05916 (12)1.24440 (10)0.0777 (4)
H20.87020.10691.28390.131 (11)*
O30.49615 (13)0.05008 (9)0.74249 (9)0.0621 (3)
O40.62770 (17)0.18962 (14)0.69180 (11)0.1046 (5)
H12A0.195 (3)0.0427 (17)0.420 (2)0.101 (6)*
H12B0.257 (3)0.0033 (19)0.569 (2)0.107 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0459 (7)0.0615 (8)0.0460 (7)0.0046 (6)0.0081 (6)0.0116 (6)
C20.0517 (8)0.0687 (9)0.0676 (9)0.0109 (7)0.0184 (7)0.0115 (7)
C30.0638 (9)0.0606 (9)0.0632 (9)0.0001 (7)0.0287 (7)0.0031 (7)
C40.0518 (7)0.0558 (7)0.0411 (6)0.0130 (6)0.0123 (6)0.0005 (5)
C50.0423 (6)0.0496 (7)0.0429 (6)0.0039 (5)0.0090 (5)0.0045 (5)
C60.0446 (6)0.0482 (7)0.0405 (6)0.0071 (5)0.0114 (5)0.0037 (5)
C70.0626 (8)0.0581 (8)0.0460 (7)0.0127 (6)0.0171 (6)0.0022 (6)
C80.0814 (11)0.0673 (10)0.0778 (11)0.0019 (8)0.0316 (9)0.0141 (8)
C90.0565 (8)0.0608 (8)0.0429 (7)0.0084 (6)0.0165 (6)0.0062 (6)
C100.0540 (7)0.0572 (8)0.0427 (7)0.0101 (6)0.0137 (6)0.0055 (5)
C110.0910 (12)0.0762 (10)0.0522 (9)0.0150 (9)0.0222 (8)0.0069 (7)
C120.0591 (9)0.0910 (13)0.0576 (9)0.0046 (9)0.0027 (8)0.0060 (9)
O10.0927 (9)0.0936 (9)0.0455 (6)0.0097 (7)0.0130 (6)0.0124 (5)
O20.0672 (7)0.0942 (9)0.0505 (6)0.0060 (6)0.0040 (5)0.0160 (6)
O30.0678 (6)0.0697 (7)0.0405 (5)0.0222 (5)0.0098 (4)0.0036 (4)
O40.1082 (10)0.1330 (12)0.0555 (7)0.0691 (9)0.0092 (7)0.0069 (7)
Geometric parameters (Å, º) top
C1—O21.352 (2)C8—H8A0.9600
C1—C21.382 (2)C8—H8B0.9600
C1—C61.4062 (19)C8—H8C0.9600
C2—C31.374 (2)C9—O41.185 (2)
C2—H2A0.9300C9—O31.353 (2)
C3—C41.379 (2)C9—C101.476 (2)
C3—H3A0.9300C10—C121.322 (2)
C4—C51.3688 (19)C10—C111.479 (2)
C4—O31.402 (2)C11—H11A0.9600
C5—C61.3987 (17)C11—H11B0.9600
C5—H5A0.9300C11—H11C0.9600
C6—C71.4681 (19)C12—H12A0.96 (2)
C7—O11.235 (2)C12—H12B0.98 (2)
C7—C81.492 (2)O2—H20.8200
O2—C1—C2117.83 (13)C7—C8—H8B109.5
O2—C1—C6121.95 (14)H8A—C8—H8B109.5
C2—C1—C6120.22 (12)C7—C8—H8C109.5
C3—C2—C1120.68 (13)H8A—C8—H8C109.5
C3—C2—H2A119.7H8B—C8—H8C109.5
C1—C2—H2A119.7O4—C9—O3122.11 (13)
C2—C3—C4119.37 (14)O4—C9—C10124.24 (13)
C2—C3—H3A120.3O3—C9—C10113.65 (12)
C4—C3—H3A120.3C12—C10—C9120.75 (14)
C5—C4—C3121.16 (12)C12—C10—C11124.09 (15)
C5—C4—O3119.30 (12)C9—C10—C11115.16 (13)
C3—C4—O3119.41 (12)C10—C11—H11A109.5
C4—C5—C6120.41 (12)C10—C11—H11B109.5
C4—C5—H5A119.8H11A—C11—H11B109.5
C6—C5—H5A119.8C10—C11—H11C109.5
C5—C6—C1118.14 (12)H11A—C11—H11C109.5
C5—C6—C7121.67 (12)H11B—C11—H11C109.5
C1—C6—C7120.19 (12)C10—C12—H12A118.7 (13)
O1—C7—C6120.13 (14)C10—C12—H12B123.1 (13)
O1—C7—C8119.10 (14)H12A—C12—H12B118.2 (19)
C6—C7—C8120.78 (13)C1—O2—H2109.5
C7—C8—H8A109.5C9—O3—C4117.32 (10)
O2—C1—C2—C3178.7 (1)C5—C6—C7—O1178.84 (13)
C6—C1—C2—C31.1 (2)C1—C6—C7—O11.6 (2)
C1—C2—C3—C41.0 (2)C5—C6—C7—C81.2 (2)
C2—C3—C4—C50.1 (2)C1—C6—C7—C8178.37 (13)
C2—C3—C4—O3175.79 (12)O4—C9—C10—C12176.71 (18)
C3—C4—C5—C61.18 (19)O3—C9—C10—C123.5 (2)
O3—C4—C5—C6176.83 (11)O4—C9—C10—C112.6 (2)
C4—C5—C6—C11.04 (18)O3—C9—C10—C11177.24 (12)
C4—C5—C6—C7179.36 (11)O4—C9—O3—C44.5 (2)
O2—C1—C6—C5179.7 (1)C10—C9—O3—C4175.63 (11)
C2—C1—C6—C50.10 (19)C5—C4—O3—C984.7 (2)
O2—C1—C6—C70.69 (19)C3—C4—O3—C999.6 (2)
C2—C1—C6—C7179.50 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.822.546 (2)146
C5—H5A···O1i0.932.573.483 (2)166
C11—H11B···O4i0.962.573.336 (2)137
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H12O4
Mr220.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.8335 (3), 11.9320 (3), 11.3295 (3)
β (°) 111.277 (2)
V3)1112.75 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.17 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14184, 3437, 2080
Rint0.026
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.161, 1.05
No. of reflections3437
No. of parameters155
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.822.546 (2)146.3
C5—H5A···O1i0.932.573.483 (2)165.6
C11—H11B···O4i0.962.573.336 (2)136.8
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing the computer facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFavier, L., Tonn, C., Guerreiro, E., Rotelli, A. & Pelzer, L. (1998). Planta Med. 64, 657–662.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParmar, V. S., Bisht, K. S., Rajni, J., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A., Pati, H. N., Berghe, D., Vanden, D. & Vlientinck, A. J. (1996). Indian J. Chem. Sect. B, 35, 220–232.  Google Scholar
First citationSala, A., Recio, M. C., Giner, R. M., Manez, S. & Rios, J. L. (2001). J. Nat. Prod. 64, 1360–1362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuksamrarn, A., Eiamong, S., Piyachaturawat, P. & Byrnes, L. T. (1997). Phytochemistry, 45, 103–109.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds