organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2,3-di­hydro-1H-cyclo­penta­[a]naphthalen-1-one

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and bState Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: syxie@xmu.edu.cn

(Received 3 August 2009; accepted 10 August 2009; online 19 August 2009)

The title compound, C13H9BrO, has been synthesized by the intra­molecular Friedel–Crafts reaction of 1-(1-bromo-4-naphth­yl)-3-chloro­propan-1-one. There are two approximately planar [maximum deviations of 0.8 (2) and 0.4 (2) Å in the two mol­ecules] molecules in the asymmetric unit. The dihedral angle between their mean planes is 19.72 (8)°. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The trimer of the title compound is a potential inter­mediate in the synthesis of fullerenes, see: Boorum et al. (2001[Boorum, M. M., Vasil'ev, Y. V., Drewello, T. & Scott, L. T. (2001). Science, 294, 828-831.]); Scott et al. (1996[Scott, L. T., Bratcher, M. S. & Hagen, S. (1996). J. Am. Chem. Soc. 118, 8743-8744.]). The Aldol cyclo­trimerization of the title compound is widely used in the synthesis of fullerenes and bowl-shaped compounds, see: Amick & Scott (2007[Amick, A. W. & Scott, L. T. (2007). J. Org. Chem. 72, 3412-3418.]). For a related structure, see: Sil et al. (2004[Sil, D., Sharon, A., Maulik, P. R. & Ram, V. J. (2004). Tetrahedron Lett. 45, 6619-6621.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrO

  • Mr = 261.10

  • Triclinic, [P \overline 1]

  • a = 7.369 (2) Å

  • b = 9.986 (3) Å

  • c = 14.177 (5) Å

  • α = 87.763 (6)°

  • β = 78.991 (6)°

  • γ = 87.154 (7)°

  • V = 1022.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.99 mm−1

  • T = 298 K

  • 0.09 × 0.08 × 0.06 mm

Data collection
  • Oxford Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.716, Tmax = 0.796

  • 5159 measured reflections

  • 3524 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 0.97

  • 3524 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.97 2.54 3.495 (5) 167
Symmetry code: (i) x, y-1, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009[Westrip, S. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound is the medial compound for the synthesis of its trimmer molecule. In the acid conditions, the trimmer molecule can be obtained by the Aldol cyclotrimerization of 5-bromo-2,3-dihydrocyclopenta[a]naphthalen-1-one. These kinds of the trimmers are the potential intermediate in the synthesis of fullerenes (Boorum et al., 2001; Scott et al., 1996). So this method was widely used in the organic synthesis of fullerenes and bowl-shaped compounds (Amick & Scott, 2007).

The molecular structure is depicted in Fig. 1. Bond lengths and angles are in good agreement with previous reported for similar compounds (Sil et al., 2004). The molecule assumes a co-planar structure, except methylene H atoms. The asymmetric unit of the crystal structure contains two independent molecules, the two molecular planes make a dihedral angle of 19.72 (8)° with respect to each other. Weak intermolecular C—H···O hydrogen bonding (Table 1) is present in the crystal structure(Fig. 2).

Related literature top

The tirmmer of the title compound is the potential intermediate in the synthesis of fullerenes, see: Boorum et al. (2001); Scott et al. (1996). The Aldol cyclotrimerization of the title compound is widely used in the synthesis of fullerenes and bowl-shaped compounds, see: Amick & Scott (2007). For a related structure, see: Sil et al. (2004).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. The title compound was synthesized by adding 1-(1-bromonaphthalen-4-yl)-3-chloropropan-1-one (1.4 mL) to concentrated H2SO4 (11 ml) at room temperature. The resulting mixture was stirred at 383 K for 3 h, after cooling to room temperature, the mixture was poured into water-ice slowly. The aqueous layer was extracted with cyclohexane (3 × 60 mL). The organic layers were combined and washed with saturated NaHCO3 solution (120 mL), saturated brine (3 × 60 ml), and dried over MgSO4, and concentrated under reduced pressure to provide the title compound. The compound was dissolved in CH2Cl2 and kept in darkness for several days, yellow block-shaped single crystals were obtained.

Refinement top

H atoms were generated geometrically with C—H 0.93 or 0.97 Å and were allowed to ride on their parent atoms in the riding model approximations, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
5-Bromo-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one top
Crystal data top
C13H9BrOZ = 4
Mr = 261.10F(000) = 520
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.369 (2) ÅCell parameters from 2244 reflections
b = 9.986 (3) Åθ = 5.0–51.6°
c = 14.177 (5) ŵ = 3.99 mm1
α = 87.763 (6)°T = 298 K
β = 78.991 (6)°Block, yellow
γ = 87.154 (7)°0.09 × 0.08 × 0.06 mm
V = 1022.3 (5) Å3
Data collection top
Oxford Gemini S Ultra
diffractometer
3524 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1903 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 117
Tmin = 0.716, Tmax = 0.796l = 1616
5159 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0728P)2]
where P = (Fo2 + 2Fc2)/3
3524 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H9BrOγ = 87.154 (7)°
Mr = 261.10V = 1022.3 (5) Å3
Triclinic, P1Z = 4
a = 7.369 (2) ÅMo Kα radiation
b = 9.986 (3) ŵ = 3.99 mm1
c = 14.177 (5) ÅT = 298 K
α = 87.763 (6)°0.09 × 0.08 × 0.06 mm
β = 78.991 (6)°
Data collection top
Oxford Gemini S Ultra
diffractometer
3524 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2663 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.796Rint = 0.023
5159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.97Δρmax = 0.52 e Å3
3524 reflectionsΔρmin = 0.40 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.65084 (6)0.55540 (4)0.27810 (3)0.06465 (19)
Br20.91872 (7)0.04342 (5)0.24015 (3)0.07118 (19)
C10.8141 (5)0.4593 (4)0.1539 (3)0.0496 (9)
C20.8305 (6)0.3098 (4)0.1488 (3)0.0595 (11)
H2A0.95220.27860.18150.071*
H2B0.73840.27220.17940.071*
C30.8005 (6)0.2664 (4)0.0430 (3)0.0574 (10)
H3A0.69530.20960.02620.069*
H3B0.90930.21810.02790.069*
C40.7646 (5)0.3963 (3)0.0089 (3)0.0428 (8)
C50.7302 (5)0.4116 (4)0.1088 (3)0.0507 (9)
H5A0.72910.33730.15050.061*
C60.6988 (5)0.5365 (4)0.1428 (3)0.0454 (9)
C70.7025 (5)0.6556 (3)0.0827 (2)0.0406 (8)
C80.6704 (5)0.7859 (3)0.1171 (3)0.0480 (9)
H8A0.64510.79850.18300.058*
C90.6756 (5)0.8937 (4)0.0558 (3)0.0540 (10)
H9A0.65440.97940.08010.065*
C100.7121 (5)0.8774 (4)0.0427 (3)0.0527 (9)
H10A0.71460.95230.08400.063*
C110.7444 (5)0.7531 (3)0.0796 (3)0.0477 (9)
H11A0.77010.74350.14590.057*
C120.7392 (5)0.6376 (3)0.0175 (2)0.0397 (8)
C130.7711 (5)0.5055 (4)0.0526 (3)0.0416 (8)
C140.6249 (5)0.0807 (4)0.6648 (3)0.0528 (10)
C150.5904 (6)0.2280 (4)0.6573 (3)0.0656 (12)
H15A0.66640.28290.69380.079*
H15B0.46150.24520.68250.079*
C160.6392 (5)0.2604 (4)0.5528 (3)0.0551 (10)
H16A0.53160.28780.52960.066*
H16B0.73470.33160.54200.066*
C170.7091 (4)0.1300 (3)0.5032 (3)0.0435 (9)
C180.7752 (5)0.1078 (4)0.4049 (3)0.0498 (9)
H18A0.78150.17670.36200.060*
C190.8295 (5)0.0155 (4)0.3739 (3)0.0462 (9)
C200.8236 (4)0.1243 (3)0.4364 (3)0.0416 (8)
C210.8801 (5)0.2544 (4)0.4031 (3)0.0491 (9)
H21A0.92470.27180.33810.059*
C220.8680 (5)0.3541 (4)0.4681 (3)0.0569 (11)
H22A0.90330.43960.44590.068*
C230.8054 (5)0.3321 (4)0.5651 (3)0.0543 (10)
H23A0.80140.40110.60770.065*
C240.7489 (5)0.2069 (4)0.5980 (3)0.0542 (10)
H24A0.70430.19230.66330.065*
C250.7569 (5)0.1006 (3)0.5352 (3)0.0429 (9)
C260.7001 (5)0.0297 (3)0.5667 (3)0.0414 (8)
O10.8324 (5)0.5286 (3)0.2259 (2)0.0722 (9)
O20.5922 (4)0.0199 (3)0.7378 (2)0.0781 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0910 (4)0.0609 (3)0.0390 (3)0.0119 (2)0.0041 (2)0.00645 (18)
Br20.0765 (3)0.0813 (4)0.0490 (3)0.0153 (2)0.0092 (2)0.0078 (2)
C10.045 (2)0.051 (2)0.054 (2)0.0024 (17)0.0130 (19)0.0079 (19)
C20.065 (3)0.057 (3)0.056 (3)0.003 (2)0.008 (2)0.015 (2)
C30.058 (3)0.041 (2)0.074 (3)0.0061 (18)0.011 (2)0.0051 (19)
C40.0401 (19)0.037 (2)0.051 (2)0.0083 (15)0.0050 (16)0.0017 (16)
C50.059 (2)0.042 (2)0.050 (2)0.0074 (18)0.0108 (19)0.0109 (17)
C60.050 (2)0.047 (2)0.039 (2)0.0091 (17)0.0047 (17)0.0022 (16)
C70.0395 (19)0.041 (2)0.041 (2)0.0082 (15)0.0069 (16)0.0048 (15)
C80.053 (2)0.045 (2)0.045 (2)0.0002 (17)0.0088 (18)0.0033 (17)
C90.064 (3)0.035 (2)0.063 (3)0.0005 (18)0.013 (2)0.0006 (17)
C100.062 (3)0.043 (2)0.051 (2)0.0005 (18)0.0076 (19)0.0106 (17)
C110.058 (2)0.045 (2)0.039 (2)0.0037 (18)0.0066 (18)0.0081 (16)
C120.0379 (19)0.0370 (19)0.044 (2)0.0035 (15)0.0072 (16)0.0030 (15)
C130.039 (2)0.042 (2)0.044 (2)0.0062 (15)0.0080 (16)0.0005 (15)
C140.045 (2)0.061 (3)0.054 (3)0.0040 (19)0.0141 (19)0.012 (2)
C150.059 (3)0.061 (3)0.080 (3)0.013 (2)0.024 (2)0.031 (2)
C160.046 (2)0.038 (2)0.083 (3)0.0077 (17)0.017 (2)0.0108 (19)
C170.0309 (18)0.042 (2)0.059 (2)0.0021 (15)0.0142 (17)0.0055 (17)
C180.045 (2)0.041 (2)0.064 (3)0.0022 (17)0.0090 (19)0.0090 (18)
C190.040 (2)0.055 (2)0.040 (2)0.0015 (17)0.0010 (16)0.0007 (16)
C200.0318 (18)0.041 (2)0.051 (2)0.0002 (15)0.0073 (16)0.0004 (16)
C210.043 (2)0.048 (2)0.058 (2)0.0121 (17)0.0121 (18)0.0083 (18)
C220.059 (3)0.034 (2)0.081 (3)0.0123 (18)0.020 (2)0.004 (2)
C230.053 (2)0.045 (2)0.067 (3)0.0079 (18)0.015 (2)0.016 (2)
C240.056 (2)0.057 (3)0.052 (2)0.0019 (19)0.013 (2)0.0053 (19)
C250.0360 (19)0.042 (2)0.052 (2)0.0007 (15)0.0123 (17)0.0037 (16)
C260.040 (2)0.042 (2)0.044 (2)0.0029 (16)0.0117 (16)0.0053 (15)
O10.098 (2)0.079 (2)0.0383 (17)0.0139 (17)0.0135 (16)0.0042 (15)
O20.092 (2)0.089 (2)0.052 (2)0.0133 (18)0.0097 (17)0.0082 (17)
Geometric parameters (Å, º) top
Br1—C61.898 (4)C12—C131.421 (5)
Br2—C191.899 (4)C14—O21.198 (5)
C1—O11.200 (5)C14—C261.476 (5)
C1—C21.492 (5)C14—C151.517 (6)
C1—C131.496 (5)C15—C161.501 (6)
C2—C31.522 (6)C15—H15A0.9700
C2—H2A0.9700C15—H15B0.9700
C2—H2B0.9700C16—C171.521 (5)
C3—C41.504 (5)C16—H16A0.9700
C3—H3A0.9700C16—H16B0.9700
C3—H3B0.9700C17—C261.364 (5)
C4—C131.366 (5)C17—C181.398 (5)
C4—C51.403 (5)C18—C191.345 (5)
C5—C61.349 (5)C18—H18A0.9300
C5—H5A0.9300C19—C201.423 (5)
C6—C71.434 (5)C20—C251.408 (5)
C7—C81.400 (5)C20—C211.420 (5)
C7—C121.412 (5)C21—C221.371 (5)
C8—C91.354 (5)C21—H21A0.9300
C8—H8A0.9300C22—C231.376 (6)
C9—C101.386 (5)C22—H22A0.9300
C9—H9A0.9300C23—C241.373 (6)
C10—C111.358 (5)C23—H23A0.9300
C10—H10A0.9300C24—C251.404 (5)
C11—C121.421 (5)C24—H24A0.9300
C11—H11A0.9300C25—C261.416 (5)
O1—C1—C2126.2 (4)O2—C14—C26128.1 (4)
O1—C1—C13126.9 (4)O2—C14—C15124.9 (4)
C2—C1—C13106.9 (3)C26—C14—C15107.0 (3)
C1—C2—C3107.6 (3)C16—C15—C14107.2 (3)
C1—C2—H2A110.2C16—C15—H15A110.3
C3—C2—H2A110.2C14—C15—H15A110.3
C1—C2—H2B110.2C16—C15—H15B110.3
C3—C2—H2B110.2C14—C15—H15B110.3
H2A—C2—H2B108.5H15A—C15—H15B108.5
C4—C3—C2103.8 (3)C15—C16—C17104.2 (3)
C4—C3—H3A111.0C15—C16—H16A110.9
C2—C3—H3A111.0C17—C16—H16A110.9
C4—C3—H3B111.0C15—C16—H16B110.9
C2—C3—H3B111.0C17—C16—H16B110.9
H3A—C3—H3B109.0H16A—C16—H16B108.9
C13—C4—C5120.9 (3)C26—C17—C18121.2 (3)
C13—C4—C3112.5 (3)C26—C17—C16111.9 (4)
C5—C4—C3126.6 (3)C18—C17—C16127.0 (3)
C6—C5—C4118.4 (3)C19—C18—C17118.5 (3)
C6—C5—H5A120.8C19—C18—H18A120.7
C4—C5—H5A120.8C17—C18—H18A120.7
C5—C6—C7123.8 (3)C18—C19—C20123.1 (4)
C5—C6—Br1117.9 (3)C18—C19—Br2117.8 (3)
C7—C6—Br1118.3 (3)C20—C19—Br2119.1 (3)
C8—C7—C12119.0 (3)C25—C20—C21119.4 (3)
C8—C7—C6124.4 (3)C25—C20—C19117.9 (3)
C12—C7—C6116.7 (3)C21—C20—C19122.8 (4)
C9—C8—C7121.0 (4)C22—C21—C20119.0 (4)
C9—C8—H8A119.5C22—C21—H21A120.5
C7—C8—H8A119.5C20—C21—H21A120.5
C8—C9—C10120.6 (4)C21—C22—C23122.3 (4)
C8—C9—H9A119.7C21—C22—H22A118.8
C10—C9—H9A119.7C23—C22—H22A118.8
C11—C10—C9120.6 (4)C24—C23—C22119.1 (4)
C11—C10—H10A119.7C24—C23—H23A120.4
C9—C10—H10A119.7C22—C23—H23A120.4
C10—C11—C12120.4 (3)C23—C24—C25121.4 (4)
C10—C11—H11A119.8C23—C24—H24A119.3
C12—C11—H11A119.8C25—C24—H24A119.3
C7—C12—C13119.1 (3)C24—C25—C20118.7 (4)
C7—C12—C11118.4 (3)C24—C25—C26122.9 (4)
C13—C12—C11122.5 (3)C20—C25—C26118.3 (3)
C4—C13—C12121.1 (3)C17—C26—C25121.0 (3)
C4—C13—C1109.1 (3)C17—C26—C14109.7 (3)
C12—C13—C1129.7 (3)C25—C26—C14129.3 (3)
O1—C1—C2—C3178.9 (4)O1—C1—C2—C3178.9 (4)
C13—C1—C2—C31.1 (4)C13—C1—C2—C31.1 (4)
C1—C2—C3—C40.8 (4)C1—C2—C3—C40.8 (4)
C2—C3—C4—C130.2 (4)C2—C3—C4—C130.2 (4)
C2—C3—C4—C5179.3 (4)C2—C3—C4—C5179.3 (4)
C13—C4—C5—C61.7 (5)C13—C4—C5—C61.7 (5)
C3—C4—C5—C6179.3 (3)C3—C4—C5—C6179.3 (3)
C4—C5—C6—C71.4 (6)C4—C5—C6—C71.4 (6)
C4—C5—C6—Br1179.6 (3)C4—C5—C6—Br1179.6 (3)
C5—C6—C7—C8179.9 (3)C5—C6—C7—C8179.9 (3)
Br1—C6—C7—C80.9 (5)Br1—C6—C7—C80.9 (5)
C5—C6—C7—C120.8 (5)C5—C6—C7—C120.8 (5)
Br1—C6—C7—C12179.8 (2)Br1—C6—C7—C12179.8 (2)
C12—C7—C8—C90.5 (5)C12—C7—C8—C90.5 (5)
C6—C7—C8—C9179.8 (4)C6—C7—C8—C9179.8 (4)
C7—C8—C9—C100.3 (6)C7—C8—C9—C100.3 (6)
C8—C9—C10—C110.4 (6)C8—C9—C10—C110.4 (6)
C9—C10—C11—C120.7 (6)C9—C10—C11—C120.7 (6)
C8—C7—C12—C13179.7 (3)C8—C7—C12—C13179.7 (3)
C6—C7—C12—C130.5 (5)C6—C7—C12—C130.5 (5)
C8—C7—C12—C110.8 (5)C8—C7—C12—C110.8 (5)
C6—C7—C12—C11179.9 (3)C6—C7—C12—C11179.9 (3)
C10—C11—C12—C70.9 (5)C10—C11—C12—C70.9 (5)
C10—C11—C12—C13179.7 (3)C10—C11—C12—C13179.7 (3)
C5—C4—C13—C121.4 (5)C5—C4—C13—C121.4 (5)
C3—C4—C13—C12179.4 (3)C3—C4—C13—C12179.4 (3)
C5—C4—C13—C1178.7 (3)C5—C4—C13—C1178.7 (3)
C3—C4—C13—C10.5 (4)C3—C4—C13—C10.5 (4)
C7—C12—C13—C40.8 (5)C7—C12—C13—C40.8 (5)
C11—C12—C13—C4179.8 (3)C11—C12—C13—C4179.8 (3)
C7—C12—C13—C1179.3 (3)C7—C12—C13—C1179.3 (3)
C11—C12—C13—C10.0 (6)C11—C12—C13—C10.0 (6)
O1—C1—C13—C4179.0 (4)O1—C1—C13—C4179.0 (4)
C2—C1—C13—C41.0 (4)C2—C1—C13—C41.0 (4)
O1—C1—C13—C121.1 (7)O1—C1—C13—C121.1 (7)
C2—C1—C13—C12178.9 (3)C2—C1—C13—C12178.9 (3)
O2—C14—C15—C16176.4 (4)O2—C14—C15—C16176.4 (4)
C26—C14—C15—C162.3 (4)C26—C14—C15—C162.3 (4)
C14—C15—C16—C172.3 (4)C14—C15—C16—C172.3 (4)
C15—C16—C17—C261.6 (4)C15—C16—C17—C261.6 (4)
C15—C16—C17—C18178.8 (3)C15—C16—C17—C18178.8 (3)
C26—C17—C18—C190.3 (5)C26—C17—C18—C190.3 (5)
C16—C17—C18—C19179.3 (3)C16—C17—C18—C19179.3 (3)
C17—C18—C19—C200.3 (5)C17—C18—C19—C200.3 (5)
C17—C18—C19—Br2180.0 (2)C17—C18—C19—Br2180.0 (2)
C18—C19—C20—C250.2 (5)C18—C19—C20—C250.2 (5)
Br2—C19—C20—C25180.0 (2)Br2—C19—C20—C25180.0 (2)
C18—C19—C20—C21179.6 (3)C18—C19—C20—C21179.6 (3)
Br2—C19—C20—C210.6 (4)Br2—C19—C20—C210.6 (4)
C25—C20—C21—C220.1 (5)C25—C20—C21—C220.1 (5)
C19—C20—C21—C22179.3 (3)C19—C20—C21—C22179.3 (3)
C20—C21—C22—C231.0 (5)C20—C21—C22—C231.0 (5)
C21—C22—C23—C241.5 (6)C21—C22—C23—C241.5 (6)
C22—C23—C24—C251.2 (6)C22—C23—C24—C251.2 (6)
C23—C24—C25—C200.4 (5)C23—C24—C25—C200.4 (5)
C23—C24—C25—C26179.9 (3)C23—C24—C25—C26179.9 (3)
C21—C20—C25—C240.2 (5)C21—C20—C25—C240.2 (5)
C19—C20—C25—C24179.6 (3)C19—C20—C25—C24179.6 (3)
C21—C20—C25—C26179.5 (3)C21—C20—C25—C26179.5 (3)
C19—C20—C25—C260.1 (5)C19—C20—C25—C260.1 (5)
C18—C17—C26—C250.2 (5)C18—C17—C26—C250.2 (5)
C16—C17—C26—C25179.4 (3)C16—C17—C26—C25179.4 (3)
C18—C17—C26—C14179.8 (3)C18—C17—C26—C14179.8 (3)
C16—C17—C26—C140.2 (4)C16—C17—C26—C140.2 (4)
C24—C25—C26—C17179.6 (3)C24—C25—C26—C17179.6 (3)
C20—C25—C26—C170.1 (5)C20—C25—C26—C170.1 (5)
C24—C25—C26—C140.0 (6)C24—C25—C26—C140.0 (6)
C20—C25—C26—C14179.7 (3)C20—C25—C26—C14179.7 (3)
O2—C14—C26—C17177.3 (4)O2—C14—C26—C17177.3 (4)
C15—C14—C26—C171.3 (4)C15—C14—C26—C171.3 (4)
O2—C14—C26—C252.2 (6)O2—C14—C26—C252.2 (6)
C15—C14—C26—C25179.1 (3)C15—C14—C26—C25179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.972.543.495 (5)167
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9BrO
Mr261.10
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.369 (2), 9.986 (3), 14.177 (5)
α, β, γ (°)87.763 (6), 78.991 (6), 87.154 (7)
V3)1022.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.99
Crystal size (mm)0.09 × 0.08 × 0.06
Data collection
DiffractometerOxford Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.716, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
5159, 3524, 2663
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 0.97
No. of reflections3524
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.972.543.495 (5)167
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

This work was supported by the NFFTBS (No. J0630429).

References

First citationAmick, A. W. & Scott, L. T. (2007). J. Org. Chem. 72, 3412–3418.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoorum, M. M., Vasil'ev, Y. V., Drewello, T. & Scott, L. T. (2001). Science, 294, 828–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScott, L. T., Bratcher, M. S. & Hagen, S. (1996). J. Am. Chem. Soc. 118, 8743–8744.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSil, D., Sharon, A., Maulik, P. R. & Ram, V. J. (2004). Tetrahedron Lett. 45, 6619–6621.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds