

Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

## 2-[(2-Carboxyphenyl)sulfanyl]acetic acid

#### Cai-Hong Zhan, Ling-Xian Chen and Yun-Long Feng\*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.edu.cn

Received 9 August 2009; accepted 26 August 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma(C-C) = 0.007$  Å; R factor = 0.074; wR factor = 0.222; data-to-parameter ratio = 15.9.

The title compound,  $C_9H_8O_4S$ , affords a zigzig chain in the crystal structure by intermolecular  $O-H\cdots O$  hydrogen bonds. The molecular geometry suggests that extensive but not uniform  $\pi$ -electron delocalization is present in the benzene ring and extends over the exocyclic C-S and C-C bonds.

#### Related literature

For background to the coordination chemistry of rigid carboxylate system, see: Sagatys *et al.* (2003); Sokolov *et al.* (2001).

#### **Experimental**

Crystal data

 $\begin{array}{lll} {\rm C_9H_8O_4S} & & a = 5.1786 \ (5) \ {\rm \mathring{A}} \\ M_r = 212.22 & & b = 9.2973 \ (9) \ {\rm \mathring{A}} \\ {\rm Triclinic}, \ P\overline{\rm I} & & c = 10.4776 \ (11) \ {\rm \mathring{A}} \end{array}$ 

 $\begin{array}{lll} \alpha = 69.980 \ (4)^{\circ} & \text{Mo } K\alpha \ \text{radiation} \\ \beta = 81.959 \ (6)^{\circ} & \mu = 0.33 \ \text{mm}^{-1} \\ \gamma = 79.732 \ (6)^{\circ} & T = 296 \ \text{K} \\ V = 464.69 \ (8) \ \mathring{\text{A}}^3 & 0.33 \times 0.24 \times 0.15 \ \text{mm} \\ Z = 2 \end{array}$ 

Data collection

 $\begin{array}{ll} \text{Bruker APEXII diffractometer} & 6609 \text{ measured reflections} \\ \text{Absorption correction: multi-scan} & 2110 \text{ independent reflections} \\ \text{($SADABS$; Sheldrick, 1996)} & 1941 \text{ reflections with } I > 2\sigma(I) \\ T_{\min} = 0.910, \, T_{\max} = 0.952 & R_{\text{int}} = 0.024 \\ \end{array}$ 

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.074 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.222 & \text{independent and constrained} \\ S=1.19 & \text{refinement} \\ 2110 \text{ reflections} & \Delta\rho_{\text{max}}=0.65 \text{ e Å}^{-3} \\ 133 \text{ parameters} & \Delta\rho_{\text{min}}=-0.34 \text{ e Å}^{-3} \end{array}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$            | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|--------------------------|----------|-------------------------|-------------------------|------------------------|
| O2-H2···O1 <sup>i</sup>  | 0.86 (7) | 1.92 (5)                | 2.687 (6)               | 149 (8)                |
| O3-H3···O4 <sup>ii</sup> | 0.85 (2) | 1.80 (5)                | 2.634 (4)               | 167 (6)                |

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z.

Data collection: *APEX2* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2858).

#### References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sagatys, D. S., Smith, G., Bott, R. C. & Healy, P. C. (2003). Aust. J. Chem. 56, 941–943

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sokolov, M., Fyodorova, N., Pervukhina, N. & Fedorov, V. (2001). Inorg. Chem. Commun. 4, 261–263.

# supporting information

Acta Cryst. (2009). E65, o2315 [doi:10.1107/S1600536809034126]

## 2-[(2-Carboxyphenyl)sulfanyl]acetic acid

### Cai-Hong Zhan, Ling-Xian Chen and Yun-Long Feng

#### **S1. Comment**

Thioacetatebenzoic acid (I) is an interesting ligand from a structural point of view since it can display a wide range of coordination patterns with metal ions. The ligand (I) belongs to dicarboxylic acids. The characteristic coordination chemistry of the rigid carboxylate system may facilitate the formation of inorganic-organic materials with high thermal stability and form large channels, while the peculiar coordination chemistry of the flexible carboxylate system employed in the self-assembly reaction has versatile coordination behavior and may be favorable for the formation of the helical structure (Sagatys *et al.*, 2003; Sokolov *et al.*, 2001). As shown in Fig.1, the bond lengths within the benzene ring exhibit the expected pattern with C—C bonds (1.368 (8)–1.399 (6) Å) between the single and double bonds. And the bond distance of C1—C7 (1.476 (5) Å) and S1—C6 (1.768 (4) Å) also fall between the double and single bonds. All these interatomic distances suggest that extensive but not uniform  $\pi$  electron delocalization is present in the benzene ring and extends over the exocyclic C—S and C—C bonds. The torsion angle of C6—S1—C8—C9 is -71.7 (4)°. O—H···O hydrogen bonds link independent molecules to form a zigzig chain.

#### S2. Experimental

To an aqueous solution of 2-thiobenzoic acid (1.54 g, 10.0 mmol) and NaOH (0.80 g, 20.0 mmol) were sequentially added the aqueous solution of chloroactic acid (2.835 g, 30.0 mmol) and NaOH (1.400 g, 35.0 mmol). After stirring for 4 h at 353 K under nitrogen atmosphere, the mixture was cooled to room temperature slowly. Adjusted the pH to 2 by adding 1.0 mol/L HCl, the pink deposit appeared rapidly. The solids were filtered and washed with water. The single crystals suitable for X-ray diffraction were obtained by the recrystallization of sieved solid in the ethanol.

#### S3. Refinement

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å,  $U_{iso}(H) = 1.2 U_{eq}(C)$ ]. The H atoms bonded to O atoms were located in a difference Fourier map and refined freely.

Acta Cryst. (2009). E65, o2315 Sup-1

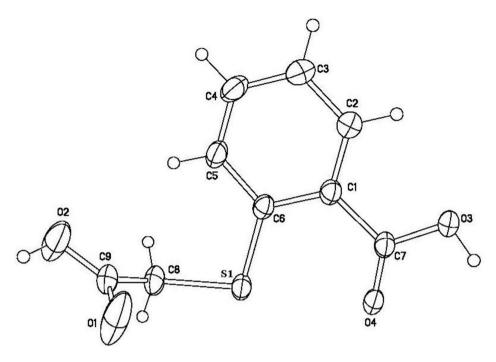



Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids

#### 2-[(2-Carboxyphenyl)sulfanyl]acetic acid

| Crystal | d | ata |
|---------|---|-----|
|---------|---|-----|

 $C_9H_8O_4S$   $M_r = 212.22$ Triclinic,  $P\overline{1}$ Hall symbol: -P 1 a = 5.1786 (5) Å b = 9.2973 (9) Å c = 10.4776 (11) Å  $\alpha = 69.980$  (4)°  $\beta = 81.959$  (6)°  $\gamma = 79.732$  (6)° V = 464.69 (8) Å<sup>3</sup>

Data collection

Bruker APEXII diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 $\omega$  scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{min} = 0.910$ ,  $T_{max} = 0.952$  Z=2 F(000)=220  $D_x=1.517~{\rm Mg~m^{-3}}$ Mo  $K\alpha$  radiation,  $\lambda=0.71073~{\rm Å}$ Cell parameters from 5343 reflections  $\theta=2.1-27.7^{\circ}$   $\mu=0.33~{\rm mm^{-1}}$   $T=296~{\rm K}$ Block, colourless  $0.33\times0.24\times0.15~{\rm mm}$ 

6609 measured reflections 2110 independent reflections 1941 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.024$   $\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$   $h = -6 \rightarrow 6$   $k = -12 \rightarrow 11$   $l = -13 \rightarrow 12$ 

Acta Cryst. (2009). E65, o2315 Sup-2

## supporting information

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.074$   $wR(F^2) = 0.222$  S = 1.192110 reflections 133 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0736P)^2 + 1.2589P]$  where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{\rm max} < 0.001$   $\Delta\rho_{\rm max} = 0.65 \ {\rm e} \ {\rm Å}^{-3}$ 

#### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\min} = -0.34 \text{ e Å}^{-3}$ 

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x           | y            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|--------------|--------------|-----------------------------|--|
| S1  | 0.2028 (2)  | 0.36823 (12) | 0.11601 (11) | 0.0417 (3)                  |  |
| O1  | -0.0678(11) | 0.4660 (9)   | 0.3612 (6)   | 0.116 (2)                   |  |
| O2  | 0.2828 (9)  | 0.5474 (7)   | 0.3870 (5)   | 0.0891 (16)                 |  |
| H2  | 0.173 (12)  | 0.569 (10)   | 0.449 (6)    | 0.107*                      |  |
| O3  | 0.2508 (7)  | -0.1074(4)   | 0.1122 (4)   | 0.0549 (9)                  |  |
| Н3  | 0.127 (8)   | -0.107(7)    | 0.067 (5)    | 0.066*                      |  |
| O4  | 0.0891 (7)  | 0.1410 (4)   | 0.0369(3)    | 0.0506 (8)                  |  |
| C1  | 0.4065 (8)  | 0.0579 (5)   | 0.2004 (4)   | 0.0383 (9)                  |  |
| C2  | 0.5712 (9)  | -0.0691 (6)  | 0.2747 (5)   | 0.0482 (10)                 |  |
| H2A | 0.5667      | -0.1659      | 0.2682       | 0.058*                      |  |
| C3  | 0.7421 (10) | -0.0540(7)   | 0.3583 (5)   | 0.0571 (12)                 |  |
| H3A | 0.8511      | -0.1398      | 0.4081       | 0.068*                      |  |
| C4  | 0.7485 (10) | 0.0890(7)    | 0.3665 (5)   | 0.0571 (13)                 |  |
| H4A | 0.8638      | 0.1000       | 0.4221       | 0.068*                      |  |
| C5  | 0.5879 (9)  | 0.2166 (6)   | 0.2942 (5)   | 0.0465 (10)                 |  |
| H5A | 0.5959      | 0.3124       | 0.3018       | 0.056*                      |  |
| C6  | 0.4120(8)   | 0.2051 (5)   | 0.2093 (4)   | 0.0365 (8)                  |  |
| C7  | 0.2342 (8)  | 0.0364 (5)   | 0.1093 (4)   | 0.0402 (9)                  |  |
| C8  | 0.2613 (11) | 0.5208 (5)   | 0.1742 (5)   | 0.0488 (11)                 |  |
| H8A | 0.4498      | 0.5209       | 0.1687       | 0.059*                      |  |
| H8B | 0.1864      | 0.6192       | 0.1130       | 0.059*                      |  |
| C9  | 0.1482 (10) | 0.5076 (6)   | 0.3179 (5)   | 0.0504 (11)                 |  |

Acta Cryst. (2009). E65, o2315 Sup-3

# supporting information

## Atomic displacement parameters $(\mathring{A}^2)$

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1 | 0.0549 (7)  | 0.0366 (5)  | 0.0400(6)   | -0.0082 (4)  | -0.0092 (4)  | -0.0178 (4)  |
| O1 | 0.093(3)    | 0.210(7)    | 0.109(4)    | -0.084(4)    | 0.041(3)     | -0.121 (5)   |
| O2 | 0.076(3)    | 0.149 (5)   | 0.077(3)    | -0.034(3)    | 0.002(2)     | -0.075(3)    |
| О3 | 0.064(2)    | 0.0412 (17) | 0.073(2)    | 0.0014 (15)  | -0.0322 (18) | -0.0301 (16) |
| O4 | 0.063(2)    | 0.0398 (16) | 0.060(2)    | -0.0022 (14) | -0.0285 (16) | -0.0241 (15) |
| C1 | 0.040(2)    | 0.043(2)    | 0.038(2)    | -0.0067 (17) | -0.0030 (16) | -0.0202 (17) |
| C2 | 0.052(3)    | 0.046(2)    | 0.050(3)    | -0.004(2)    | -0.012(2)    | -0.020(2)    |
| C3 | 0.056(3)    | 0.062(3)    | 0.055(3)    | 0.000(2)     | -0.021(2)    | -0.020(2)    |
| C4 | 0.046(3)    | 0.077(3)    | 0.060(3)    | -0.005 (2)   | -0.020(2)    | -0.033(3)    |
| C5 | 0.042(2)    | 0.058(3)    | 0.054(3)    | -0.012 (2)   | -0.0053 (19) | -0.033 (2)   |
| C6 | 0.0368 (19) | 0.044(2)    | 0.0344 (19) | -0.0082 (16) | -0.0008(15)  | -0.0194 (16) |
| C7 | 0.043(2)    | 0.041(2)    | 0.045(2)    | -0.0066 (17) | -0.0047 (17) | -0.0241 (18) |
| C8 | 0.067(3)    | 0.038(2)    | 0.050(2)    | -0.016 (2)   | -0.008(2)    | -0.0189 (19) |
| C9 | 0.058 (3)   | 0.047 (2)   | 0.060(3)    | -0.010 (2)   | -0.009 (2)   | -0.032 (2)   |

## Geometric parameters (Å, °)

| Geometric parameters (A, | ,         |            |           |
|--------------------------|-----------|------------|-----------|
| S1—C6                    | 1.768 (4) | C2—C3      | 1.385 (6) |
| S1—C8                    | 1.809 (4) | C2—H2A     | 0.9300    |
| O1—C9                    | 1.224 (7) | C3—C4      | 1.368 (8) |
| O2—C9                    | 1.251 (6) | C3—H3A     | 0.9300    |
| O2—H2                    | 0.86 (7)  | C4—C5      | 1.372 (7) |
| O3—C7                    | 1.315 (5) | C4—H4A     | 0.9300    |
| O3—H3                    | 0.85 (2)  | C5—C6      | 1.399 (6) |
| O4—C7                    | 1.216 (5) | C5—H5A     | 0.9300    |
| C1—C2                    | 1.388 (6) | C8—C9      | 1.509 (7) |
| C1—C6                    | 1.409 (6) | C8—H8A     | 0.9700    |
| C1—C7                    | 1.476 (5) | C8—H8B     | 0.9700    |
| C6—S1—C8                 | 103.4 (2) | C6—C5—H5A  | 119.4     |
| C9—O2—H2                 | 105 (6)   | C5—C6—C1   | 117.6 (4) |
| C7—O3—H3                 | 105 (4)   | C5—C6—S1   | 121.8 (3) |
| C2—C1—C6                 | 120.0 (4) | C1—C6—S1   | 120.6 (3) |
| C2—C1—C7                 | 118.8 (4) | O4—C7—O3   | 122.1 (4) |
| C6—C1—C7                 | 121.2 (4) | O4—C7—C1   | 123.9 (4) |
| C3—C2—C1                 | 121.0 (4) | O3—C7—C1   | 114.1 (4) |
| C3—C2—H2A                | 119.5     | C9—C8—S1   | 114.5 (3) |
| C1—C2—H2A                | 119.5     | C9—C8—H8A  | 108.6     |
| C4—C3—C2                 | 119.1 (5) | S1—C8—H8A  | 108.6     |
| C4—C3—H3A                | 120.5     | C9—C8—H8B  | 108.6     |
| C2—C3—H3A                | 120.5     | S1—C8—H8B  | 108.6     |
| C3—C4—C5                 | 121.1 (4) | H8A—C8—H8B | 107.6     |
| C3—C4—H4A                | 119.4     | O1—C9—O2   | 122.5 (5) |
| C5—C4—H4A                | 119.4     | O1—C9—C8   | 121.3 (4) |
| C4—C5—C6                 | 121.2 (4) | O2—C9—C8   | 116.1 (5) |
|                          |           |            |           |

Acta Cryst. (2009). E65, o2315

| C4_     | _C5_ | –H5А  | 119.4 |
|---------|------|-------|-------|
| $C_{4}$ | -05- | -11JA | 117.4 |

## Hydrogen-bond geometry (Å, $^{o}$ )

| <i>D</i> —H··· <i>A</i>  | <i>D</i> —H | $H\cdots A$ | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|--------------------------|-------------|-------------|-----------|-------------------------|
| O2—H2···O1 <sup>i</sup>  | 0.86 (7)    | 1.92 (5)    | 2.687 (6) | 149 (8)                 |
| O3—H3···O4 <sup>ii</sup> | 0.85 (2)    | 1.80 (5)    | 2.634 (4) | 167 (6)                 |

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z.

Acta Cryst. (2009). E**65**, o2315