organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[2-(p-toluene­sulfonamido)phen­yl]acrylate

aDepartment of Chemical Engineering, Anyang Institute of Technology, 455000 Anyang, People's Republic of China, and bDepartment of Chemistry, Dezhou University, 253023 Dezhou, People's Republic of China
*Correspondence e-mail: jmeifangns@163.com

(Received 22 August 2009; accepted 26 August 2009; online 5 September 2009)

In the title compound, C18H19NO4S, the two benzene rings form a dihedral angle of 52.2 (7)°. The crystal struture is stabilized by N—H⋯O hydrogen bonds, which link the molecules into dimers.

Related literature

For functionalized carbon frameworks, see: Mukherjee et al. (2007[Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471-5569.]). For sulfonamido compounds and their use in pharmaceuticals, see: Patchett et al. (1995[Patchett, A. A., Nargund, R. P. & Tata, J. R. (1995). Proc. Natl Acad. Sci. USA, 92, 7001-7005.]). For a related structure, see: Senthil Kumaret al. (2006[Senthil Kumar, G., Chinnakali, K., Ramesh, N., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o5905-o5907.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO4S

  • Mr = 345.40

  • Triclinic, [P \overline 1]

  • a = 8.001 (4) Å

  • b = 10.245 (5) Å

  • c = 11.402 (5) Å

  • α = 81.182 (5)°

  • β = 70.895 (4)°

  • γ = 86.604 (5)°

  • V = 872.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 291 K

  • 0.46 × 0.43 × 0.38 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.93

  • 15343 measured reflections

  • 3553 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.147

  • S = 1.18

  • 3553 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.92 2.01 2.920 (2) 172
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Pearce & Watkin, 1993[Pearce, L. J. & Watkin, D. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Electron-deficient olefin, particularly α,β-unsaturated carbonyl compound, was used as a fundamental material to construct functionalized carbon frameworks (Mukherjee et al., 2007). Sulfonamido is an important group in natural compounds and many pharmaceuticals (Patchett et al., 1995). We selected N-(2-formylphenyl)(4-methylbenzene)sulfonamide and (ethoxycarbonylmethylene)triphenylphosphorane to synthesize a new compound formulated as C18H19N1O4S1 (I) with dimeric structures via hydrogen bonds.

The molecular structure of (I) is illustrated in Fig. 1. The geometry of the molecule is close to the related compound Ethyl 2-([N-(2- iodophenyl)phenylsulfonamido]methyl)-1-phenylsulfonyl-1H-indole-3- carboxylate (Senthil Kumar, et al., 2006). Bond lengths and angles (S1—O1 =1.427 (1) Å, S1—O2 = 1.431 (1) Å, O1-S1-O2 = 121.3 (1) °, O1-S1-N1 = 107.3 (9) °, O2S1N1 = 104.7 (1) °) involving the S atom of the phenylsufonyl group present in the molecule is similar to the distances (S1—O1 = 1.425 Å, S1—O2 = 1.429 Å) and angles (O1-S1-O2 = 120.4 (8) °, O1-S1-N1 = 106.9 (7) °, O2-S1-N1 = 106.7 (7) °)) that reported in the literature (Senthil Kumar, et al., 2006); the O—S—O, N—S—C and N—S—O angles deviate significantly from the ideal tetrahedral value (Table 1), which is consistent to the reported data in the literature (Senthil Kumar, et al., 2006). The phenyl rings (C2—>C7) and (C8—>C13) are planar to within 0.01 Å. The dihedral angle between the two phenyl rings is 52.3 (1) °.

The crystal struture is further stabilized by hydrogen bonding. As shown in Fig.2, a dimeric structure is formed via intermolecular hydrogen bonds N1—H2···O3i (i = 1 - x, 1 - y, -z) (Table 2).

Related literature top

For functionalized carbon framework, see: Mukherjee et al. (2007).

For sulfonamido compounds and their use in pharmaceuticals, see: Patchett et al. (1995). For a related structure, see: Senthil Kumar et al. (2006).

Experimental top

The mixture of N-(2-formylphenyl)(4-methylbenzene)sulfonamide (0.500 g, 1.82 mmol) and (ethoxycarbonylmethylene)triphenylphosphorane (0.700 g, 2.00 mmol) in dichloromethane (10 ml) was stirred at room temperature for 2 h (Scheme 2). After evaporation of the solvent, the title compound was obtained from the residue by chromatography. Single crystals suitable for X-ray analysis were obtained from ethyl acetate by slow evaporation.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93-0.96 Å and N—H = 0.92 Å, and Uiso(H) = 1.2-1.5 Ueq(host).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce & Watkin, 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoide are drawn at 30% probability level.
[Figure 2] Fig. 2. The dimeric structure of the title compound. Dotted lines indicate hydrogen bonds [Symmetry code: (i) = 1 - x, 1 - y, -z.]
[Figure 3] Fig. 3. The formation of the title compound.
Ethyl 3-[2-(p-toluenesulfonamido)phenyl]acrylate top
Crystal data top
C18H19NO4SZ = 2
Mr = 345.40F(000) = 364
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.001 (4) ÅCell parameters from 8607 reflections
b = 10.245 (5) Åθ = 2.8–29.2°
c = 11.402 (5) ŵ = 0.21 mm1
α = 81.182 (5)°T = 291 K
β = 70.895 (4)°Block, colourless
γ = 86.604 (5)°0.46 × 0.43 × 0.38 mm
V = 872.7 (8) Å3
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3553 independent reflections
Radiation source: fine-focus sealed tube2784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 15.9149 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.91, Tmax = 0.93l = 1414
15343 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0903P)2]
where P = (Fo2 + 2Fc2)/3
3553 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H19NO4Sγ = 86.604 (5)°
Mr = 345.40V = 872.7 (8) Å3
Triclinic, P1Z = 2
a = 8.001 (4) ÅMo Kα radiation
b = 10.245 (5) ŵ = 0.21 mm1
c = 11.402 (5) ÅT = 291 K
α = 81.182 (5)°0.46 × 0.43 × 0.38 mm
β = 70.895 (4)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3553 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2784 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.93Rint = 0.020
15343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.18Δρmax = 0.24 e Å3
3553 reflectionsΔρmin = 0.28 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72847 (6)0.25225 (4)0.25492 (5)0.0646 (2)
O10.70944 (18)0.19430 (14)0.38058 (14)0.0831 (5)
O20.86898 (18)0.21412 (15)0.15094 (16)0.0947 (5)
O30.4015 (2)0.67440 (14)0.03433 (11)0.0782 (4)
O40.2137 (2)0.78869 (13)0.17227 (12)0.0891 (5)
N10.54807 (18)0.22083 (13)0.22784 (12)0.0526 (4)
H10.55610.24760.14540.063*
C10.7190 (4)0.8460 (2)0.2182 (3)0.1029 (8)
H1A0.80380.88330.14080.154*
H1B0.74510.87320.28720.154*
H1C0.60240.87610.21980.154*
C20.7276 (3)0.69829 (19)0.22896 (18)0.0662 (5)
C30.7857 (3)0.6372 (2)0.12236 (19)0.0740 (6)
H30.82280.68880.04400.089*
C40.7895 (3)0.5024 (2)0.12980 (18)0.0690 (5)
H40.82750.46290.05710.083*
C50.7361 (2)0.42488 (17)0.24668 (16)0.0548 (4)
C60.6821 (2)0.4838 (2)0.35380 (17)0.0640 (5)
H60.64840.43260.43240.077*
C70.6786 (3)0.6198 (2)0.34324 (19)0.0706 (5)
H70.64190.65950.41580.085*
C80.3783 (2)0.22505 (15)0.32128 (13)0.0459 (4)
C90.3306 (2)0.11643 (16)0.41448 (14)0.0533 (4)
H90.41050.04700.41630.064*
C100.1657 (2)0.11117 (18)0.50398 (15)0.0598 (5)
H100.13460.03860.56630.072*
C110.0473 (2)0.21322 (19)0.50108 (16)0.0643 (5)
H110.06470.20910.56090.077*
C120.0937 (2)0.32127 (18)0.41022 (16)0.0578 (4)
H120.01220.38970.40950.069*
C130.2609 (2)0.33082 (15)0.31862 (13)0.0461 (4)
C140.3083 (2)0.44882 (16)0.22402 (14)0.0494 (4)
H140.40040.43980.15050.059*
C150.2336 (3)0.56488 (18)0.23341 (15)0.0671 (5)
H150.13970.57610.30520.080*
C160.2919 (3)0.67872 (17)0.13510 (15)0.0592 (5)
C170.2604 (4)0.9087 (2)0.08528 (19)0.1009 (9)
H17A0.38550.90730.03800.121*
H17B0.19450.91600.02660.121*
C180.2205 (4)1.0191 (2)0.1528 (2)0.0906 (7)
H18A0.24211.09940.09470.136*
H18B0.29411.01580.20490.136*
H18C0.09851.01620.20420.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0528 (3)0.0488 (3)0.0846 (4)0.0071 (2)0.0191 (2)0.0037 (2)
O10.0854 (10)0.0685 (9)0.1021 (11)0.0082 (7)0.0561 (9)0.0283 (8)
O20.0584 (8)0.0700 (10)0.1324 (13)0.0181 (7)0.0011 (8)0.0179 (9)
O30.1002 (10)0.0654 (9)0.0459 (7)0.0207 (7)0.0027 (7)0.0068 (6)
O40.1339 (13)0.0402 (7)0.0584 (8)0.0133 (7)0.0093 (8)0.0022 (6)
N10.0575 (8)0.0454 (7)0.0484 (7)0.0050 (6)0.0125 (6)0.0007 (6)
C10.153 (2)0.0586 (13)0.1080 (18)0.0072 (14)0.0580 (17)0.0062 (13)
C20.0749 (12)0.0547 (11)0.0725 (12)0.0066 (9)0.0297 (10)0.0035 (9)
C30.0894 (14)0.0598 (12)0.0637 (11)0.0128 (10)0.0193 (10)0.0107 (9)
C40.0772 (13)0.0585 (11)0.0595 (11)0.0064 (9)0.0077 (9)0.0030 (9)
C50.0429 (9)0.0537 (10)0.0604 (10)0.0024 (7)0.0112 (7)0.0031 (8)
C60.0629 (11)0.0661 (12)0.0553 (10)0.0075 (9)0.0140 (8)0.0063 (9)
C70.0790 (13)0.0664 (13)0.0641 (11)0.0047 (10)0.0171 (10)0.0138 (9)
C80.0542 (9)0.0409 (8)0.0429 (8)0.0037 (7)0.0170 (7)0.0030 (6)
C90.0689 (11)0.0417 (9)0.0497 (9)0.0031 (8)0.0232 (8)0.0023 (7)
C100.0731 (12)0.0512 (10)0.0521 (9)0.0173 (9)0.0202 (9)0.0082 (7)
C110.0575 (10)0.0652 (12)0.0594 (10)0.0140 (9)0.0078 (8)0.0042 (9)
C120.0506 (9)0.0557 (10)0.0614 (10)0.0013 (8)0.0151 (8)0.0025 (8)
C130.0504 (9)0.0438 (9)0.0433 (8)0.0033 (7)0.0169 (7)0.0008 (6)
C140.0536 (9)0.0459 (9)0.0429 (8)0.0040 (7)0.0121 (7)0.0013 (6)
C150.0839 (13)0.0472 (10)0.0487 (9)0.0063 (9)0.0029 (9)0.0008 (8)
C160.0737 (12)0.0467 (10)0.0475 (9)0.0056 (8)0.0093 (8)0.0025 (7)
C170.166 (2)0.0426 (11)0.0665 (13)0.0021 (13)0.0062 (14)0.0073 (9)
C180.128 (2)0.0522 (12)0.0851 (15)0.0036 (12)0.0264 (14)0.0070 (11)
Geometric parameters (Å, º) top
S1—O11.4268 (15)C7—H70.9300
S1—O21.4282 (15)C8—C91.391 (2)
S1—N11.6308 (16)C8—C131.395 (2)
S1—C51.760 (2)C9—C101.377 (2)
O3—C161.201 (2)C9—H90.9300
O4—C161.315 (2)C10—C111.373 (3)
O4—C171.440 (2)C10—H100.9300
N1—C81.429 (2)C11—C121.372 (2)
N1—H10.9203C11—H110.9300
C1—C21.499 (3)C12—C131.400 (2)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.468 (2)
C1—H1C0.9600C14—C151.302 (2)
C2—C71.371 (3)C14—H140.9300
C2—C31.383 (3)C15—C161.468 (2)
C3—C41.371 (3)C15—H150.9300
C3—H30.9300C17—C181.427 (3)
C4—C51.390 (2)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.376 (3)C18—H18A0.9600
C6—C71.380 (3)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
O1—S1—O2121.53 (10)C10—C9—C8120.32 (16)
O1—S1—N1107.04 (8)C10—C9—H9119.8
O2—S1—N1104.81 (9)C8—C9—H9119.8
O1—S1—C5108.14 (9)C11—C10—C9119.93 (16)
O2—S1—C5107.81 (8)C11—C10—H10120.0
N1—S1—C5106.63 (7)C9—C10—H10120.0
C16—O4—C17117.49 (15)C12—C11—C10120.17 (17)
C8—N1—S1121.54 (11)C12—C11—H11119.9
C8—N1—H1118.1C10—C11—H11119.9
S1—N1—H1111.8C11—C12—C13121.51 (17)
C2—C1—H1A109.5C11—C12—H12119.2
C2—C1—H1B109.5C13—C12—H12119.2
H1A—C1—H1B109.5C8—C13—C12117.60 (14)
C2—C1—H1C109.5C8—C13—C14122.03 (14)
H1A—C1—H1C109.5C12—C13—C14120.38 (15)
H1B—C1—H1C109.5C15—C14—C13126.10 (15)
C7—C2—C3118.06 (19)C15—C14—H14116.9
C7—C2—C1121.61 (19)C13—C14—H14116.9
C3—C2—C1120.33 (18)C14—C15—C16122.61 (16)
C4—C3—C2121.34 (18)C14—C15—H15118.7
C4—C3—H3119.3C16—C15—H15118.7
C2—C3—H3119.3O3—C16—O4123.41 (17)
C3—C4—C5119.55 (19)O3—C16—C15124.92 (17)
C3—C4—H4120.2O4—C16—C15111.63 (15)
C5—C4—H4120.2C18—C17—O4109.33 (17)
C6—C5—C4119.91 (17)C18—C17—H17A109.8
C6—C5—S1120.91 (13)O4—C17—H17A109.8
C4—C5—S1119.11 (14)C18—C17—H17B109.8
C5—C6—C7119.18 (17)O4—C17—H17B109.8
C5—C6—H6120.4H17A—C17—H17B108.3
C7—C6—H6120.4C17—C18—H18A109.5
C2—C7—C6121.93 (18)C17—C18—H18B109.5
C2—C7—H7119.0H18A—C18—H18B109.5
C6—C7—H7119.0C17—C18—H18C109.5
C9—C8—C13120.45 (15)H18A—C18—H18C109.5
C9—C8—N1117.27 (15)H18B—C18—H18C109.5
C13—C8—N1122.25 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.922.012.920 (2)172
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H19NO4S
Mr345.40
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.001 (4), 10.245 (5), 11.402 (5)
α, β, γ (°)81.182 (5), 70.895 (4), 86.604 (5)
V3)872.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.46 × 0.43 × 0.38
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.91, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
15343, 3553, 2784
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.147, 1.18
No. of reflections3553
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce & Watkin, 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.922.012.920 (2)171.6
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authours thank the Anyang Institute of Technology, the Natural Science Foundation of Shandong (project code: Y 2007F 68), the Scientific Research Developmental Project of Shandong Provincial Education Department (project code: J07WC09) and the Scientific Developmental Project of Dezhou City (project code 050702) for support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471–5569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPatchett, A. A., Nargund, R. P. & Tata, J. R. (1995). Proc. Natl Acad. Sci. USA, 92, 7001–7005.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPearce, L. J. & Watkin, D. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationSenthil Kumar, G., Chinnakali, K., Ramesh, N., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o5905–o5907.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds