organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tris(N-phenyl­benzimidazol-2-yl)benzene methanol solvate

aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: yuliu@jlu.edu.cn

(Received 9 July 2009; accepted 7 September 2009; online 12 September 2009)

The main mol­ecule of the title compound, C45H30N6·CH3OH, has a non-planar core: the dihedral angles between the benzimidazole rings and the central benzene ring are 20.19 (10), 34.57 (8), and 44.59 (8)°, while the dihedral angles between the peripheral phenyl rings and the attached benzimidazole rings are 84.57 (7), 62.71 (6) and 51.73 (6)°. The tri-substituted benzene mol­ecule is connected to the methanol solvent mol­ecule through an O—H⋯N hydrogen bond, forming a 1:1 solvate. In the crystal structure, no significant ππ inter­actions are present, and the mol­ecules are associated through weak C—H⋯N and C—H⋯O(methanol) contacts.

Related literature

For OLEDs (organic light emitting diodes), see: Adachi et al. (2001[Adachi, C., Baldo, M. A., Forrest, S. R., Lamansky, S., Thompson, M. E. & Kwong, R. C. (2001). Appl. Phys. Lett. 78, 1622-1624.]); Gao et al. (1999[Gao, Z., Lee, C. S., Bello, I., Lee, S. T., Chen, R.-M., Luh, T.-Y., Shi, J. & Tang, C. W. (1999). Appl. Phys. Lett. 74, 865-867.]); Shi et al. (1997[Shi, J., Tang, C. W. & Chen, C. H. (1997). US Patent 5645948.]); Lo et al. (2002[Lo, S.-C., Male, N. A. H., Markham, J. P. J., Magennis, S. W., Burn, P. L., Salata, O. V. & Samuel, I. D. W. (2002). Adv. Mater. 14, 975-979.]). For the structure of a related solvate, see: Totsatitpaisan et al. (2008[Totsatitpaisan, P., Tashiro, K. & Chirachanchai, S. (2008). J. Phys. Chem. A, 112, 10348-10358.]).

[Scheme 1]

Experimental

Crystal data
  • C45H30N6·CH4O

  • Mr = 686.79

  • Monoclinic, P 21 /c

  • a = 11.253 (2) Å

  • b = 18.692 (4) Å

  • c = 17.763 (4) Å

  • β = 101.58 (3)°

  • V = 3660.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.986

  • 35250 measured reflections

  • 8285 independent reflections

  • 4831 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.142

  • S = 1.01

  • 8285 reflections

  • 480 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H0⋯N1i 0.82 2.12 2.936 (2) 170
C25—H25⋯N5ii 0.93 2.69 3.603 (3) 169
C37—H37⋯N4iii 0.93 2.43 3.338 (3) 164
C32—H32⋯Oiv 0.93 2.71 3.605 (3) 161
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

For many years there has been extensive research on OLED because of their high luminance, low drive voltage, fast response time, wide viewing angle and a variety of emission color in flat-panel displays. To achieve highly efficient organic electroluminescence, it is essential to confine the excitons within the emitting layer and prevent the excitons and holes to approach the cathode. Therefore, an electron transporting/hole blocking layer is often introduced between the emitting layer and the cathode in some organic electroluminescent diodes (OLEDs). Due to its almost omnipotent properties, TPBI, 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene, is an excellent electroluminescent (EL) material, which has been used as an electron-transporting layer for OLEDs based on fluorescent emitters (Gao et al., 1999), as host (Adachi et al., 2001) or electron-transporting/hole-blocking layer (Lo et al., 2002) for phosphorescent emitters, and enhanced the efficiency of OLEDs. For these reasons, it has attracted considerable interest for years. However, its crystal structure has not been reported until now.

As shown in Fig. 1, the molecular skeleton is non-planar. The dihedral angles between the benzimidazole rings and the central benzene ring, and between the peripheral phenyl rings and the benzimidazole rings, are 20.19 (10), 34.57 (8), 44.59 (8)° and 84.57 (7), 62.71 (6), 51.73 (6)°, respectively. The bond lengths and angles are all in normal ranges. The TPBI molecule forms a 1:1 solvate with methanol, a situation reminiscent of that reported for an other TPBI derivative, stabilized with 2-propanol (Totsatitpaisan et al., 2008).

The packing of the title compound (Fig. 2) shows that there is no π···π interactions. Instead, the molecules are connected with hydrogen bonds.

Related literature top

For OLEDs (organic light emitting diodes), see: Adachi et al. (2001); Gao et al. (1999); Shi et al. (1997); Lo et al. (2002). For the structure of a related solvate, see: Totsatitpaisan et al. (2008).

Experimental top

To a solution of N-phenyl-1,2-phenylenediamine (16.6 g, 0.09 mol) in 100 ml of N-methyl pyrrolidinone was added 1,3,5-benzenetricarbonyl chloride (8.0 g, 0.03 mol) in portion at room temperature under nitrogen. The reaction mixture was stirred at room temperature for 2 h, then raise temperature to 50 for another 0.5 h. After cooling, the mixture was poured into 300 ml of cool water with stirring. The resulted precipitates were filtered and washed with water. After drying, the tribenzamide was collected to give 19.5 g. The TPBI [1,3,5-tris(2-N-phenylbenzimidazolyl)benzene)] was obtained by heating the tribenzamide in 0.3 atm, nitrogen pressure, at 553–568 K for about one hour. The pure TPBI was obtained by sublimation twice at 588 K at 2 Torr pressure. Colorless crystals suitable for X-ray diffraction study were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were placed in calculated positions, with aryl C—H distances of 0.93 Å and methyl C—H distances of 0.96 Å and were refined using a riding model with Uiso(H) = 1.2Ueq(aryl C) or 1.5Ueq(methyl C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of title compound along the a axis.
1,3,5-Tris(N-phenylbenzimidazol-2-yl)benzene methanol solvate top
Crystal data top
C45H30N6·CH4OF(000) = 1440
Mr = 686.79Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20230 reflections
a = 11.253 (2) Åθ = 3.2–27.4°
b = 18.692 (4) ŵ = 0.08 mm1
c = 17.763 (4) ÅT = 293 K
β = 101.58 (3)°Block, white
V = 3660.1 (13) Å30.26 × 0.20 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8285 independent reflections
Radiation source: fine-focus sealed tube4831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1314
Tmin = 0.981, Tmax = 0.986k = 2424
35250 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.0076P]
where P = (Fo2 + 2Fc2)/3
8285 reflections(Δ/σ)max = 0.001
480 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C45H30N6·CH4OV = 3660.1 (13) Å3
Mr = 686.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.253 (2) ŵ = 0.08 mm1
b = 18.692 (4) ÅT = 293 K
c = 17.763 (4) Å0.26 × 0.20 × 0.19 mm
β = 101.58 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8285 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4831 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.058
35250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
8285 reflectionsΔρmin = 0.19 e Å3
480 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67816 (14)0.26248 (9)0.59902 (9)0.0395 (4)
C20.76343 (16)0.18804 (10)0.53310 (9)0.0458 (4)
C30.84043 (18)0.15308 (11)0.49281 (11)0.0593 (5)
H30.91790.17040.49280.071*
C40.7980 (2)0.09211 (12)0.45300 (12)0.0679 (6)
H40.84780.06780.42570.081*
C50.6827 (2)0.06613 (11)0.45271 (11)0.0623 (6)
H50.65720.02460.42530.075*
C60.60416 (18)0.09983 (10)0.49185 (11)0.0540 (5)
H60.52640.08260.49110.065*
C70.64802 (15)0.16091 (9)0.53243 (9)0.0431 (4)
C80.46769 (15)0.20601 (9)0.57811 (10)0.0448 (4)
C90.42339 (19)0.14782 (11)0.61197 (13)0.0623 (5)
H90.47510.11140.63410.075*
C100.3007 (2)0.14498 (14)0.61229 (15)0.0766 (7)
H100.26920.10570.63370.092*
C110.2254 (2)0.19923 (16)0.58148 (16)0.0827 (8)
H110.14330.19710.58300.099*
C120.26996 (19)0.25670 (14)0.54838 (14)0.0765 (7)
H120.21840.29390.52830.092*
C130.39177 (16)0.25975 (11)0.54466 (11)0.0580 (5)
H130.42160.29760.51990.070*
C140.47156 (15)0.39957 (9)0.78240 (9)0.0405 (4)
C150.31701 (16)0.38001 (11)0.84005 (10)0.0493 (4)
C160.22712 (19)0.35362 (13)0.87530 (13)0.0697 (6)
H160.22230.30530.88700.084*
C170.1447 (2)0.40314 (16)0.89222 (15)0.0861 (8)
H170.08290.38780.91610.103*
C180.1520 (2)0.47526 (16)0.87438 (14)0.0808 (7)
H180.09370.50670.88540.097*
C190.24308 (19)0.50124 (12)0.84088 (12)0.0654 (6)
H190.24830.54960.82980.078*
C200.32741 (16)0.45222 (10)0.82405 (10)0.0490 (5)
C210.44315 (15)0.27268 (9)0.82388 (10)0.0440 (4)
C220.55981 (17)0.25387 (11)0.85886 (11)0.0539 (5)
H220.61750.28880.87650.065*
C230.5890 (2)0.18240 (13)0.86714 (15)0.0784 (7)
H230.66750.16870.88970.094*
C240.5018 (2)0.13114 (13)0.84194 (18)0.0949 (9)
H240.52190.08290.84750.114*
C250.3868 (2)0.15060 (12)0.80906 (16)0.0817 (7)
H250.32840.11560.79300.098*
C260.35646 (18)0.22138 (11)0.79942 (12)0.0606 (5)
H260.27780.23470.77650.073*
C270.81789 (15)0.50360 (9)0.69485 (10)0.0417 (4)
C280.93525 (15)0.59210 (9)0.73459 (10)0.0473 (4)
C291.00798 (17)0.64426 (11)0.77757 (12)0.0608 (5)
H291.02020.64510.83090.073*
C301.0609 (2)0.69445 (12)0.73781 (14)0.0711 (6)
H301.11050.72930.76520.085*
C311.04256 (19)0.69455 (12)0.65845 (14)0.0702 (6)
H311.07880.73000.63400.084*
C320.97182 (17)0.64332 (11)0.61455 (12)0.0584 (5)
H320.95960.64290.56120.070*
C330.92006 (15)0.59245 (9)0.65505 (10)0.0464 (4)
C340.79088 (15)0.52221 (9)0.55055 (10)0.0446 (4)
C350.6804 (2)0.55176 (12)0.52083 (12)0.0724 (6)
H350.63750.57600.55250.087*
C360.6330 (2)0.54512 (14)0.44293 (14)0.0873 (8)
H360.55760.56490.42220.105*
C370.6958 (2)0.51002 (13)0.39669 (13)0.0755 (7)
H370.66530.50770.34410.091*
C380.8029 (2)0.47839 (15)0.42712 (13)0.0808 (7)
H380.84430.45270.39560.097*
C390.85137 (18)0.48410 (13)0.50520 (11)0.0637 (6)
H390.92460.46200.52620.076*
C400.66199 (14)0.32475 (9)0.64708 (9)0.0388 (4)
C410.57686 (15)0.32759 (9)0.69462 (9)0.0402 (4)
H410.52520.28900.69620.048*
C420.56899 (14)0.38813 (9)0.73976 (9)0.0392 (4)
C430.64966 (15)0.44444 (9)0.73921 (9)0.0421 (4)
H430.64640.48400.77050.051*
C440.73500 (14)0.44234 (9)0.69252 (9)0.0405 (4)
C450.73934 (15)0.38286 (9)0.64583 (9)0.0420 (4)
H450.79470.38190.61330.050*
C460.0678 (2)0.15090 (15)0.15807 (17)0.0937 (8)
H46A0.14920.13590.15720.141*
H46B0.02460.11220.17590.141*
H46C0.07000.19110.19190.141*
N10.78056 (12)0.25108 (8)0.57557 (8)0.0449 (4)
N20.59401 (12)0.20906 (7)0.57505 (8)0.0413 (3)
N30.41101 (12)0.34643 (8)0.81320 (8)0.0439 (3)
N40.42540 (13)0.46350 (8)0.78866 (8)0.0478 (4)
N50.86992 (13)0.53606 (8)0.75867 (8)0.0470 (4)
N60.84508 (12)0.53411 (8)0.63005 (8)0.0444 (4)
O0.00881 (14)0.17053 (11)0.08356 (10)0.0876 (5)
H00.05080.19500.08600.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (9)0.0382 (9)0.0378 (9)0.0012 (7)0.0090 (7)0.0003 (7)
C20.0497 (10)0.0482 (11)0.0393 (9)0.0079 (8)0.0083 (8)0.0039 (8)
C30.0529 (11)0.0696 (14)0.0574 (12)0.0098 (10)0.0159 (9)0.0125 (10)
C40.0722 (14)0.0721 (15)0.0609 (13)0.0191 (12)0.0172 (10)0.0184 (11)
C50.0797 (14)0.0491 (12)0.0553 (12)0.0111 (10)0.0070 (10)0.0160 (10)
C60.0656 (12)0.0432 (11)0.0517 (11)0.0025 (9)0.0079 (9)0.0076 (9)
C70.0504 (10)0.0390 (10)0.0396 (9)0.0066 (8)0.0081 (8)0.0035 (7)
C80.0450 (9)0.0417 (10)0.0480 (10)0.0021 (8)0.0104 (8)0.0098 (8)
C90.0621 (12)0.0505 (12)0.0782 (14)0.0035 (10)0.0235 (11)0.0029 (11)
C100.0691 (14)0.0708 (16)0.0987 (18)0.0202 (13)0.0377 (13)0.0130 (14)
C110.0488 (12)0.101 (2)0.0994 (19)0.0136 (13)0.0188 (12)0.0282 (16)
C120.0515 (12)0.0854 (18)0.0883 (16)0.0151 (12)0.0035 (12)0.0079 (14)
C130.0526 (11)0.0559 (13)0.0625 (12)0.0068 (9)0.0047 (9)0.0037 (10)
C140.0487 (9)0.0375 (10)0.0355 (8)0.0019 (7)0.0090 (7)0.0006 (7)
C150.0490 (10)0.0567 (12)0.0448 (10)0.0118 (9)0.0162 (8)0.0046 (9)
C160.0631 (12)0.0756 (16)0.0783 (15)0.0110 (11)0.0332 (11)0.0179 (12)
C170.0706 (15)0.108 (2)0.0917 (18)0.0232 (14)0.0456 (13)0.0166 (16)
C180.0734 (15)0.095 (2)0.0805 (16)0.0333 (14)0.0306 (12)0.0024 (14)
C190.0694 (13)0.0643 (14)0.0638 (13)0.0213 (11)0.0167 (10)0.0074 (11)
C200.0521 (10)0.0548 (12)0.0401 (9)0.0109 (9)0.0092 (8)0.0036 (8)
C210.0508 (10)0.0389 (10)0.0453 (10)0.0034 (8)0.0168 (8)0.0070 (8)
C220.0520 (10)0.0542 (12)0.0542 (11)0.0034 (9)0.0080 (9)0.0081 (9)
C230.0648 (14)0.0624 (15)0.1063 (19)0.0190 (12)0.0131 (13)0.0255 (14)
C240.0898 (18)0.0445 (14)0.153 (3)0.0073 (13)0.0306 (18)0.0264 (15)
C250.0733 (15)0.0480 (14)0.123 (2)0.0111 (11)0.0184 (14)0.0130 (13)
C260.0525 (11)0.0520 (12)0.0763 (14)0.0045 (9)0.0106 (10)0.0096 (10)
C270.0444 (9)0.0367 (9)0.0432 (9)0.0019 (7)0.0067 (7)0.0011 (7)
C280.0455 (9)0.0422 (10)0.0514 (11)0.0022 (8)0.0027 (8)0.0037 (8)
C290.0599 (12)0.0555 (13)0.0618 (12)0.0063 (10)0.0002 (10)0.0134 (10)
C300.0667 (13)0.0565 (14)0.0844 (16)0.0214 (11)0.0019 (12)0.0125 (12)
C310.0676 (13)0.0555 (14)0.0853 (16)0.0236 (10)0.0098 (12)0.0035 (12)
C320.0594 (11)0.0550 (12)0.0596 (12)0.0132 (10)0.0089 (9)0.0046 (10)
C330.0445 (9)0.0410 (10)0.0509 (10)0.0046 (8)0.0033 (8)0.0010 (8)
C340.0504 (10)0.0397 (10)0.0419 (9)0.0089 (8)0.0052 (8)0.0012 (8)
C350.0753 (14)0.0689 (15)0.0637 (13)0.0202 (12)0.0081 (11)0.0104 (11)
C360.0959 (18)0.0762 (17)0.0717 (16)0.0146 (14)0.0263 (14)0.0019 (13)
C370.1030 (18)0.0703 (16)0.0457 (11)0.0252 (14)0.0027 (12)0.0053 (11)
C380.0850 (16)0.106 (2)0.0542 (13)0.0097 (15)0.0204 (12)0.0130 (13)
C390.0561 (11)0.0835 (16)0.0517 (11)0.0008 (11)0.0110 (9)0.0060 (11)
C400.0441 (9)0.0354 (9)0.0363 (8)0.0021 (7)0.0067 (7)0.0008 (7)
C410.0470 (9)0.0348 (9)0.0387 (9)0.0035 (7)0.0081 (7)0.0006 (7)
C420.0457 (9)0.0369 (9)0.0349 (8)0.0022 (7)0.0076 (7)0.0013 (7)
C430.0517 (10)0.0348 (9)0.0390 (9)0.0007 (8)0.0071 (8)0.0014 (7)
C440.0445 (9)0.0359 (9)0.0402 (9)0.0003 (7)0.0065 (7)0.0018 (7)
C450.0453 (9)0.0398 (10)0.0420 (9)0.0020 (8)0.0116 (7)0.0005 (8)
C460.0745 (16)0.098 (2)0.105 (2)0.0080 (14)0.0076 (15)0.0065 (16)
N10.0444 (8)0.0489 (9)0.0424 (8)0.0005 (7)0.0111 (6)0.0057 (7)
N20.0437 (7)0.0356 (8)0.0454 (8)0.0015 (6)0.0110 (6)0.0041 (6)
N30.0468 (8)0.0423 (9)0.0453 (8)0.0048 (7)0.0154 (6)0.0039 (7)
N40.0598 (9)0.0402 (9)0.0437 (8)0.0059 (7)0.0107 (7)0.0026 (7)
N50.0520 (8)0.0434 (9)0.0436 (8)0.0005 (7)0.0045 (7)0.0029 (7)
N60.0494 (8)0.0406 (8)0.0414 (8)0.0096 (6)0.0052 (6)0.0006 (6)
O0.0620 (10)0.1121 (15)0.0919 (12)0.0045 (9)0.0231 (9)0.0123 (10)
Geometric parameters (Å, º) top
C1—N11.319 (2)C23—H230.9300
C1—N21.383 (2)C24—C251.357 (3)
C1—C401.476 (2)C24—H240.9300
C2—N11.392 (2)C25—C261.369 (3)
C2—C71.392 (2)C25—H250.9300
C2—C31.393 (3)C26—H260.9300
C3—C41.375 (3)C27—N51.315 (2)
C3—H30.9300C27—N61.373 (2)
C4—C51.385 (3)C27—C441.472 (2)
C4—H40.9300C28—C331.389 (3)
C5—C61.381 (3)C28—N51.395 (2)
C5—H50.9300C28—C291.397 (2)
C6—C71.387 (2)C29—C301.379 (3)
C6—H60.9300C29—H290.9300
C7—N21.392 (2)C30—C311.383 (3)
C8—C131.374 (3)C30—H300.9300
C8—C91.383 (3)C31—C321.382 (3)
C8—N21.434 (2)C31—H310.9300
C9—C101.383 (3)C32—C331.389 (3)
C9—H90.9300C32—H320.9300
C10—C111.364 (4)C33—N61.396 (2)
C10—H100.9300C34—C391.356 (3)
C11—C121.367 (3)C34—C351.366 (3)
C11—H110.9300C34—N61.439 (2)
C12—C131.387 (3)C35—C361.385 (3)
C12—H120.9300C35—H350.9300
C13—H130.9300C36—C371.356 (4)
C14—N41.316 (2)C36—H360.9300
C14—N31.378 (2)C37—C381.354 (3)
C14—C421.468 (2)C37—H370.9300
C15—C161.383 (3)C38—C391.389 (3)
C15—C201.389 (3)C38—H380.9300
C15—N31.394 (2)C39—H390.9300
C16—C171.385 (3)C40—C451.395 (2)
C16—H160.9300C40—C411.400 (2)
C17—C181.391 (4)C41—C421.400 (2)
C17—H170.9300C41—H410.9300
C18—C191.373 (3)C42—C431.391 (2)
C18—H180.9300C43—C441.390 (2)
C19—C201.394 (3)C43—H430.9300
C19—H190.9300C44—C451.394 (2)
C20—N41.391 (2)C45—H450.9300
C21—C261.375 (3)C46—O1.405 (3)
C21—C221.380 (2)C46—H46A0.9600
C21—N31.428 (2)C46—H46B0.9600
C22—C231.377 (3)C46—H46C0.9600
C22—H220.9300O—H00.8200
C23—C241.381 (3)
N1—C1—N2111.94 (14)C21—C26—H26120.3
N1—C1—C40121.80 (15)N5—C27—N6113.30 (15)
N2—C1—C40126.23 (15)N5—C27—C44123.57 (16)
N1—C2—C7109.91 (15)N6—C27—C44123.10 (14)
N1—C2—C3130.03 (17)C33—C28—N5110.53 (15)
C7—C2—C3120.03 (17)C33—C28—C29119.45 (18)
C4—C3—C2117.74 (19)N5—C28—C29130.02 (17)
C4—C3—H3121.1C30—C29—C28117.4 (2)
C2—C3—H3121.1C30—C29—H29121.3
C3—C4—C5121.40 (19)C28—C29—H29121.3
C3—C4—H4119.3C29—C30—C31122.09 (19)
C5—C4—H4119.3C29—C30—H30119.0
C6—C5—C4122.13 (19)C31—C30—H30119.0
C6—C5—H5118.9C32—C31—C30121.7 (2)
C4—C5—H5118.9C32—C31—H31119.2
C5—C6—C7116.12 (18)C30—C31—H31119.2
C5—C6—H6121.9C31—C32—C33115.9 (2)
C7—C6—H6121.9C31—C32—H32122.1
C6—C7—N2131.78 (17)C33—C32—H32122.1
C6—C7—C2122.57 (17)C28—C33—C32123.47 (17)
N2—C7—C2105.56 (14)C28—C33—N6105.26 (15)
C13—C8—C9121.05 (18)C32—C33—N6131.27 (17)
C13—C8—N2119.30 (17)C39—C34—C35120.61 (17)
C9—C8—N2119.61 (16)C39—C34—N6119.98 (16)
C10—C9—C8118.6 (2)C35—C34—N6119.37 (17)
C10—C9—H9120.7C34—C35—C36119.2 (2)
C8—C9—H9120.7C34—C35—H35120.4
C11—C10—C9120.7 (2)C36—C35—H35120.4
C11—C10—H10119.7C37—C36—C35120.4 (2)
C9—C10—H10119.7C37—C36—H36119.8
C10—C11—C12120.3 (2)C35—C36—H36119.8
C10—C11—H11119.9C38—C37—C36120.0 (2)
C12—C11—H11119.9C38—C37—H37120.0
C11—C12—C13120.3 (2)C36—C37—H37120.0
C11—C12—H12119.9C37—C38—C39120.3 (2)
C13—C12—H12119.9C37—C38—H38119.8
C8—C13—C12119.0 (2)C39—C38—H38119.8
C8—C13—H13120.5C34—C39—C38119.4 (2)
C12—C13—H13120.5C34—C39—H39120.3
N4—C14—N3112.69 (15)C38—C39—H39120.3
N4—C14—C42121.61 (15)C45—C40—C41119.02 (15)
N3—C14—C42125.42 (15)C45—C40—C1117.07 (15)
C16—C15—C20122.57 (18)C41—C40—C1123.89 (15)
C16—C15—N3131.95 (19)C40—C41—C42120.39 (15)
C20—C15—N3105.47 (16)C40—C41—H41119.8
C15—C16—C17116.3 (2)C42—C41—H41119.8
C15—C16—H16121.9C43—C42—C41119.42 (16)
C17—C16—H16121.9C43—C42—C14116.70 (15)
C16—C17—C18121.7 (2)C41—C42—C14123.57 (15)
C16—C17—H17119.2C44—C43—C42120.85 (16)
C18—C17—H17119.2C44—C43—H43119.6
C19—C18—C17121.7 (2)C42—C43—H43119.6
C19—C18—H18119.2C43—C44—C45119.25 (15)
C17—C18—H18119.2C43—C44—C27118.10 (15)
C18—C19—C20117.4 (2)C45—C44—C27122.66 (16)
C18—C19—H19121.3C44—C45—C40121.01 (16)
C20—C19—H19121.3C44—C45—H45119.5
C15—C20—N4110.29 (15)C40—C45—H45119.5
C15—C20—C19120.39 (19)O—C46—H46A109.5
N4—C20—C19129.27 (19)O—C46—H46B109.5
C26—C21—C22120.99 (17)H46A—C46—H46B109.5
C26—C21—N3119.12 (16)O—C46—H46C109.5
C22—C21—N3119.88 (16)H46A—C46—H46C109.5
C23—C22—C21118.72 (19)H46B—C46—H46C109.5
C23—C22—H22120.6C1—N1—C2105.86 (14)
C21—C22—H22120.6C1—N2—C7106.72 (14)
C22—C23—C24120.0 (2)C1—N2—C8129.74 (14)
C22—C23—H23120.0C7—N2—C8122.62 (13)
C24—C23—H23120.0C14—N3—C15106.30 (14)
C25—C24—C23120.5 (2)C14—N3—C21128.04 (15)
C25—C24—H24119.7C15—N3—C21125.35 (15)
C23—C24—H24119.7C14—N4—C20105.23 (15)
C24—C25—C26120.3 (2)C27—N5—C28104.64 (14)
C24—C25—H25119.8C27—N6—C33106.26 (14)
C26—C25—H25119.8C27—N6—C34129.54 (14)
C25—C26—C21119.42 (19)C33—N6—C34122.91 (14)
C25—C26—H26120.3C46—O—H0109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0···N1i0.822.122.936 (2)170
C25—H25···N5ii0.932.693.603 (3)169
C37—H37···N4iii0.932.433.338 (3)164
C32—H32···Oiv0.932.713.605 (3)161
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC45H30N6·CH4O
Mr686.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.253 (2), 18.692 (4), 17.763 (4)
β (°) 101.58 (3)
V3)3660.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.20 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
35250, 8285, 4831
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.01
No. of reflections8285
No. of parameters480
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0···N1i0.822.122.936 (2)170.4
C25—H25···N5ii0.932.693.603 (3)169.0
C37—H37···N4iii0.932.433.338 (3)164.1
C32—H32···Oiv0.932.713.605 (3)160.6
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 50733002) and the Jilin Provincial Science and Technology Bureau (grant No. 20070107).

References

First citationAdachi, C., Baldo, M. A., Forrest, S. R., Lamansky, S., Thompson, M. E. & Kwong, R. C. (2001). Appl. Phys. Lett. 78, 1622–1624.  Web of Science CrossRef CAS Google Scholar
First citationGao, Z., Lee, C. S., Bello, I., Lee, S. T., Chen, R.-M., Luh, T.-Y., Shi, J. & Tang, C. W. (1999). Appl. Phys. Lett. 74, 865–867.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLo, S.-C., Male, N. A. H., Markham, J. P. J., Magennis, S. W., Burn, P. L., Salata, O. V. & Samuel, I. D. W. (2002). Adv. Mater. 14, 975–979.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J., Tang, C. W. & Chen, C. H. (1997). US Patent 5645948.  Google Scholar
First citationTotsatitpaisan, P., Tashiro, K. & Chirachanchai, S. (2008). J. Phys. Chem. A, 112, 10348–10358.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds