organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(6-Chloro-3-pyrid­yl)meth­yl]-5-eth­­oxy-8-nitro-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-a]pyridine

aInstitute of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022, People's Republic of China, and bShanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
*Correspondence e-mail: chm_tianzz@ujn.edu.cn, lizhong@ecust.edu.cn

(Received 26 July 2009; accepted 17 September 2009; online 26 September 2009)

In the title compound, C15H19ClN4O3, an active agrochemical possessing insecticidal activity, the dihedral angle between the mean planes passing through the pyridine ring and the five-membered ring is 87.3 (2)°. The fused pyridine ring adopts a twisted sofa conformation. The mol­ecular structure features close intra­molecular C—H⋯N and C—H⋯O hydrogen bonding.

Related literature

For related literature, see: Kagabu et al. (2002[Kagabu, S., Nishiwaki, H., Sato, K., Hibi, M., Yamaoka, N. & Nakagawa, Y. (2002). Pest. Manag. Sci. 58, 483-490.]); Moriya et al. (1992[Moriya, K., Shibuya, K., Hattori, Y., Tsuboi, S., Shiokawa, K. & Kagabu, S. (1992). Biosci. Biotechnol. Biochem. 56, 364-365.]); Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288-2292.]); Tokumitsu (1990[Tokumitsu, T. (1990). Bull. Chem. Soc. Jpn, 63, 1921-1924.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19ClN4O3

  • Mr = 338.79

  • Monoclinic, P 21 /c

  • a = 17.021 (3) Å

  • b = 5.5737 (8) Å

  • c = 18.334 (3) Å

  • β = 112.097 (3)°

  • V = 1611.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 290 K

  • 0.50 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.969

  • 8970 measured reflections

  • 3486 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 0.82

  • 3486 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O3 0.97 2.35 2.803 (3) 108
C13—H13⋯N1 0.93 2.54 2.891 (3) 103

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Since the debut of Imidacloprid in the 1990 decade (Moriya et al., 1992), neonicotinoid insecticides have become rapidly an important chemical class of insecticides. Nitromethylene compounds (Kagabu et al., 2002) exhibited remarkably higher biological activity but poor photostability compared with Imidacloprid. Our synthetic interest was introducing dicyclic ring into the lead structure to improve its photostability and synthesizing a series of new compounds, in which compound (I) exhibited good insecticidal activities against pea aphids and was slightly weaker than that of imidacloprid (Tian et al., 2007).The dihedral angle between the mean planes passing through the pyridine ring and the five membered ring is 87.3 (2)°. The six membered N2/C3/C4/C5/C6/C7 ring adopts a twist sofa conformation. The title compound C15H19ClN4O3 , is an active agrochemical possessing insecticidal activity. The dihedral angle between the mean planes passing through the pyridine ring and the five membered ring is 87.3 (2)°. The six membered N2/C3/C4/C5/C6/C7 ring adopts a twist sofa conformation.The molecular structure is stabilized by intramolecular C— H··· N and C— H··· O hydrogen bond, Table 1.

Related literature top

For related literature, see: Kagabu et al. (2002); Moriya et al. (1992); Tian et al. (2007); Tokumitsu (1990).

Experimental top

The synthesis of the title compoud was following the reported method by Tokumitsu, 1990. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of dichloromethane and petroleum ether of the title compound. m.p. 399.8–400.8 K.

Refinement top

H atoms were positioned geometrically and included in the refinement in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for pyridine H atoms, C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for the methylene H atoms, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for the methyl H atoms, C—H = 0.98 Å and Uiso(H) = 1.2 Ueq(C) for the methenyl H atoms

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (a) with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as circles of arbitrary size and intramolecular hydrogen bonds are indicated by dotted lines.
1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7- hexahydroimidazo[1,2-a]pyridine top
Crystal data top
C15H19ClN4O3F(000) = 712
Mr = 338.79Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1727 reflections
a = 17.021 (3) Åθ = 4.8–47.4°
b = 5.5737 (8) ŵ = 0.26 mm1
c = 18.334 (3) ÅT = 290 K
β = 112.097 (3)°Prismatic, colourless
V = 1611.6 (4) Å30.50 × 0.24 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 27.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2121
Tmin = 0.922, Tmax = 0.969k = 77
8970 measured reflectionsl = 2313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.044
3486 reflectionsΔρmax = 0.32 e Å3
210 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (2)
Crystal data top
C15H19ClN4O3V = 1611.6 (4) Å3
Mr = 338.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.021 (3) ŵ = 0.26 mm1
b = 5.5737 (8) ÅT = 290 K
c = 18.334 (3) Å0.50 × 0.24 × 0.12 mm
β = 112.097 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1870 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.969Rint = 0.082
8970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.82Δρmax = 0.32 e Å3
3486 reflectionsΔρmin = 0.24 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.20916 (4)0.34129 (13)0.43476 (5)0.0742 (3)
O10.58663 (11)0.9036 (4)0.35790 (10)0.0669 (5)
O20.69588 (12)0.4707 (4)0.16844 (11)0.0739 (6)
O30.81680 (12)0.5033 (3)0.26680 (11)0.0653 (5)
N10.84352 (11)0.9213 (3)0.35853 (10)0.0428 (5)
N20.71934 (11)1.0384 (4)0.35902 (11)0.0484 (5)
N30.74299 (13)0.5777 (4)0.22900 (12)0.0517 (5)
N41.05820 (12)0.4680 (4)0.42526 (12)0.0542 (5)
C10.86309 (14)1.0659 (5)0.43064 (14)0.0528 (6)
H1A0.90761.18140.43610.063*
H1B0.88060.96450.47700.063*
C20.77991 (15)1.1909 (5)0.41832 (15)0.0594 (7)
H2A0.76871.19460.46640.071*
H2B0.77931.35330.39910.071*
C30.75815 (13)0.9028 (4)0.32102 (13)0.0406 (5)
C40.71043 (14)0.7723 (4)0.25471 (13)0.0451 (6)
C50.61813 (14)0.8220 (5)0.21354 (14)0.0582 (7)
H5A0.58570.69210.22360.070*
H5B0.60450.82930.15720.070*
C60.59349 (15)1.0563 (5)0.24097 (15)0.0602 (7)
H6A0.53221.06890.22100.072*
H6B0.61501.18900.21970.072*
C70.62807 (15)1.0737 (5)0.32935 (15)0.0552 (7)
H70.61611.23400.34450.066*
C80.59553 (18)0.9382 (6)0.43754 (16)0.0753 (9)
H8A0.57321.09410.44330.090*
H8B0.65510.93340.47150.090*
C90.5492 (2)0.7483 (7)0.46073 (19)0.1023 (12)
H9A0.48960.76200.42990.123*
H9B0.55870.76520.51550.123*
H9C0.56910.59400.45190.123*
C110.89956 (13)0.9436 (4)0.31525 (13)0.0455 (6)
H11A0.91311.11180.31300.055*
H11B0.86950.88910.26170.055*
C120.98050 (13)0.8050 (4)0.35017 (12)0.0393 (5)
C130.98935 (14)0.6091 (4)0.39838 (13)0.0490 (6)
H130.94430.57190.41340.059*
C141.12093 (14)0.5302 (4)0.40378 (13)0.0454 (6)
C151.12235 (14)0.7269 (4)0.35956 (13)0.0465 (6)
H151.16990.76510.34860.056*
C161.05008 (14)0.8655 (4)0.33212 (13)0.0462 (6)
H161.04801.00000.30140.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0596 (4)0.0681 (5)0.0967 (6)0.0181 (3)0.0313 (4)0.0041 (4)
O10.0668 (11)0.0879 (15)0.0610 (12)0.0114 (10)0.0413 (10)0.0097 (10)
O20.0778 (12)0.0823 (14)0.0702 (13)0.0259 (11)0.0374 (11)0.0376 (11)
O30.0691 (12)0.0575 (12)0.0737 (13)0.0125 (9)0.0320 (10)0.0075 (9)
N10.0411 (11)0.0494 (12)0.0425 (11)0.0023 (8)0.0210 (9)0.0026 (9)
N20.0439 (11)0.0575 (13)0.0477 (12)0.0013 (9)0.0216 (9)0.0130 (10)
N30.0583 (13)0.0558 (13)0.0503 (13)0.0090 (11)0.0311 (11)0.0095 (11)
N40.0553 (12)0.0513 (13)0.0624 (14)0.0059 (10)0.0293 (11)0.0106 (10)
C10.0529 (14)0.0594 (16)0.0473 (14)0.0102 (12)0.0201 (12)0.0093 (12)
C20.0641 (16)0.0623 (18)0.0556 (16)0.0076 (13)0.0269 (13)0.0186 (13)
C30.0447 (13)0.0413 (13)0.0407 (13)0.0016 (10)0.0216 (11)0.0027 (10)
C40.0475 (13)0.0493 (15)0.0436 (14)0.0033 (11)0.0231 (11)0.0055 (11)
C50.0476 (14)0.081 (2)0.0484 (15)0.0038 (13)0.0204 (12)0.0060 (13)
C60.0466 (14)0.082 (2)0.0545 (16)0.0109 (13)0.0218 (12)0.0084 (14)
C70.0500 (14)0.0604 (17)0.0626 (17)0.0079 (12)0.0297 (13)0.0033 (13)
C80.0739 (19)0.104 (3)0.0543 (18)0.0098 (17)0.0314 (15)0.0030 (17)
C90.111 (3)0.143 (3)0.071 (2)0.020 (2)0.055 (2)0.006 (2)
C110.0480 (13)0.0474 (14)0.0479 (14)0.0009 (11)0.0257 (11)0.0059 (11)
C120.0426 (12)0.0410 (13)0.0379 (12)0.0033 (10)0.0193 (10)0.0017 (10)
C130.0483 (14)0.0533 (16)0.0545 (15)0.0001 (11)0.0299 (12)0.0080 (12)
C140.0433 (13)0.0477 (15)0.0453 (14)0.0016 (11)0.0167 (11)0.0066 (11)
C150.0435 (13)0.0538 (15)0.0494 (14)0.0068 (11)0.0257 (11)0.0048 (12)
C160.0488 (14)0.0493 (14)0.0451 (14)0.0073 (11)0.0230 (11)0.0045 (11)
Geometric parameters (Å, º) top
Cl—C141.745 (2)C5—H5A0.9700
O1—C71.396 (3)C5—H5B0.9700
O1—C81.423 (3)C6—C71.505 (4)
O2—N31.250 (2)C6—H6A0.9700
O3—N31.255 (2)C6—H6B0.9700
N1—C31.358 (3)C7—H70.9800
N1—C111.458 (3)C8—C91.475 (4)
N1—C11.475 (3)C8—H8A0.9700
N2—C31.356 (3)C8—H8B0.9700
N2—C71.453 (3)C9—H9A0.9600
N2—C21.457 (3)C9—H9B0.9600
N3—C41.379 (3)C9—H9C0.9600
N4—C141.316 (3)C11—C121.497 (3)
N4—C131.342 (3)C11—H11A0.9700
C1—C21.517 (3)C11—H11B0.9700
C1—H1A0.9700C12—C131.377 (3)
C1—H1B0.9700C12—C161.386 (3)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.369 (3)
C3—C41.387 (3)C15—C161.378 (3)
C4—C51.491 (3)C15—H150.9300
C5—C61.514 (4)C16—H160.9300
C7—O1—C8114.8 (2)H6A—C6—H6B108.0
C3—N1—C11121.70 (18)O1—C7—N2112.8 (2)
C3—N1—C1109.47 (18)O1—C7—C6108.2 (2)
C11—N1—C1117.89 (18)N2—C7—C6108.9 (2)
C3—N2—C7122.79 (19)O1—C7—H7108.9
C3—N2—C2111.33 (18)N2—C7—H7108.9
C7—N2—C2123.86 (19)C6—C7—H7108.9
O2—N3—O3120.5 (2)O1—C8—C9109.7 (3)
O2—N3—C4118.2 (2)O1—C8—H8A109.7
O3—N3—C4121.2 (2)C9—C8—H8A109.7
C14—N4—C13115.5 (2)O1—C8—H8B109.7
N1—C1—C2103.53 (17)C9—C8—H8B109.7
N1—C1—H1A111.1H8A—C8—H8B108.2
C2—C1—H1A111.1C8—C9—H9A109.5
N1—C1—H1B111.1C8—C9—H9B109.5
C2—C1—H1B111.1H9A—C9—H9B109.5
H1A—C1—H1B109.0C8—C9—H9C109.5
N2—C2—C1101.66 (19)H9A—C9—H9C109.5
N2—C2—H2A111.4H9B—C9—H9C109.5
C1—C2—H2A111.4N1—C11—C12114.11 (18)
N2—C2—H2B111.4N1—C11—H11A108.7
C1—C2—H2B111.4C12—C11—H11A108.7
H2A—C2—H2B109.3N1—C11—H11B108.7
N2—C3—N1109.43 (19)C12—C11—H11B108.7
N2—C3—C4120.32 (19)H11A—C11—H11B107.6
N1—C3—C4130.3 (2)C13—C12—C16116.7 (2)
N3—C4—C3122.3 (2)C13—C12—C11123.00 (19)
N3—C4—C5117.1 (2)C16—C12—C11120.3 (2)
C3—C4—C5120.3 (2)N4—C13—C12124.8 (2)
C4—C5—C6111.3 (2)N4—C13—H13117.6
C4—C5—H5A109.4C12—C13—H13117.6
C6—C5—H5A109.4N4—C14—C15125.8 (2)
C4—C5—H5B109.4N4—C14—Cl116.08 (18)
C6—C5—H5B109.4C15—C14—Cl118.11 (18)
H5A—C5—H5B108.0C14—C15—C16117.0 (2)
C5—C6—C7111.6 (2)C14—C15—H15121.5
C5—C6—H6A109.3C16—C15—H15121.5
C7—C6—H6A109.3C15—C16—C12120.1 (2)
C5—C6—H6B109.3C15—C16—H16119.9
C7—C6—H6B109.3C12—C16—H16119.9
C3—N1—C1—C216.3 (3)C8—O1—C7—N275.1 (3)
C11—N1—C1—C2128.5 (2)C8—O1—C7—C6164.3 (2)
C3—N2—C2—C119.3 (3)C3—N2—C7—O191.2 (3)
C7—N2—C2—C1176.5 (2)C2—N2—C7—O1106.4 (3)
N1—C1—C2—N220.5 (2)C3—N2—C7—C628.9 (3)
C7—N2—C3—N1174.3 (2)C2—N2—C7—C6133.5 (2)
C2—N2—C3—N19.9 (3)C5—C6—C7—O167.8 (3)
C7—N2—C3—C46.0 (3)C5—C6—C7—N255.2 (3)
C2—N2—C3—C4170.4 (2)C7—O1—C8—C9180.0 (2)
C11—N1—C3—N2138.6 (2)C3—N1—C11—C12140.6 (2)
C1—N1—C3—N24.7 (3)C1—N1—C11—C1279.0 (2)
C11—N1—C3—C441.7 (4)N1—C11—C12—C1323.2 (3)
C1—N1—C3—C4175.0 (2)N1—C11—C12—C16159.4 (2)
O2—N3—C4—C3179.6 (2)C14—N4—C13—C121.3 (3)
O3—N3—C4—C33.1 (3)C16—C12—C13—N43.6 (3)
O2—N3—C4—C57.1 (3)C11—C12—C13—N4173.9 (2)
O3—N3—C4—C5170.2 (2)C13—N4—C14—C152.3 (3)
N2—C3—C4—N3158.8 (2)C13—N4—C14—Cl177.37 (17)
N1—C3—C4—N320.8 (4)N4—C14—C15—C163.2 (3)
N2—C3—C4—C514.3 (3)Cl—C14—C15—C16176.44 (17)
N1—C3—C4—C5166.1 (2)C14—C15—C16—C120.6 (3)
N3—C4—C5—C6173.1 (2)C13—C12—C16—C152.4 (3)
C3—C4—C5—C613.5 (3)C11—C12—C16—C15175.1 (2)
C4—C5—C6—C748.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O30.972.352.803 (3)108
C13—H13···N10.932.542.891 (3)103

Experimental details

Crystal data
Chemical formulaC15H19ClN4O3
Mr338.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)17.021 (3), 5.5737 (8), 18.334 (3)
β (°) 112.097 (3)
V3)1611.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.922, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
8970, 3486, 1870
Rint0.082
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 0.82
No. of reflections3486
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O30.972.352.803 (3)108.1
C13—H13···N10.932.542.891 (3)103
 

Acknowledgements

The authors thank the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant No. SKLCB-2008-08) and the Doctoral Foundation of the University of Jinan (grant No. XBS0823, B0542) for financial support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKagabu, S., Nishiwaki, H., Sato, K., Hibi, M., Yamaoka, N. & Nakagawa, Y. (2002). Pest. Manag. Sci. 58, 483–490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoriya, K., Shibuya, K., Hattori, Y., Tsuboi, S., Shiokawa, K. & Kagabu, S. (1992). Biosci. Biotechnol. Biochem. 56, 364–365.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTokumitsu, T. (1990). Bull. Chem. Soc. Jpn, 63, 1921–1924.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds