organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Bromo-4-ethyl­phen­yl)-2-methyl­propanoic acid

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 7 September 2009; accepted 11 September 2009; online 16 September 2009)

In the title compound, C12H15BrO2, the carboxyl group forms a dihedral angle of 78.4 (3)° with the benzene ring plane. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds.

Related literature

For the preparation of pharmaceuticals and active agrochemical ingredients using 2-(3-bromo-4-ethyl­phen­yl)-2-methyl­propanoic acid, see: Wiegand et al. (2007[Wiegand, J. M. C., Schafer, C., Palaoro, M., Skranc, W. & Maurer, O. (2007). WO Patent No. 2007096034.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15BrO2

  • Mr = 271.15

  • Monoclinic, P 21 /n

  • a = 9.7370 (19) Å

  • b = 7.2930 (15) Å

  • c = 17.433 (4) Å

  • β = 90.98 (3)°

  • V = 1237.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.30 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.558, Tmax = 0.734

  • 2389 measured reflections

  • 2246 independent reflections

  • 1171 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.157

  • S = 1.00

  • 2246 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯O2i 0.82 1.88 2.696 (6) 178
Symmetry code: (i) -x, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(3-Bromo-4-ethylphenyl)-2-methylpropanoic acid is one of the valuable intermediates for the preparation of pharmaceuticals and active agrochemical ingredients (Wiegand et al., 2007). We report here the crystal structure of the title compound.

Bond lengths (Allen et al., 1987) and angles in the title molecule (Fig.1) are within normal ranges. The plane of the carboxyl group forms a dihedral angle of 78.4 (3)° with the benzene plane.

In the crystal, molecules are linked into centrosymmetric dimers by pairs of O—H···O hydrogen bonds (Fig. 2).

Related literature top

For the preparation of pharmaceuticals and active agrochemical ingredients using 2-(3-bromo-4-ethylphenyl)-2-methylpropanoic acid, see: Wiegand et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the hydrolyzation of methyl 2-(3-bromo-4-ethylphenyl)-2-methylpropanoate (10.42 g, 0.037 mol) in a solution of methanol (30 ml) and acetone (150 ml), catalyzed by KOH aqueous solution (73 ml, 1.0 mol/l) at room temperature (298 k). After stirring for 8 h, methanol and acetone were removed by reduced distillation to obtain an aqueous substrate. The substrate was washed with dichloromethane (4× 20 ml), and precipitated with concentrated hydrochloric acid. Then the precipitate was washed with water, collected and dried to give 2-(3-bromo-4-ethylphenyl)-2-methylpropanoic acid (4.07 g, 0.015 mol) with a yield of 41.0%. Single crystals of the compound were obtained by slow evaporation of an methanol solution at room temperature.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-(3-Bromo-4-ethylphenyl)-2-methylpropanoic acid top
Crystal data top
C12H15BrO2F(000) = 552
Mr = 271.15Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.7370 (19) Åθ = 10–13°
b = 7.2930 (15) ŵ = 3.30 mm1
c = 17.433 (4) ÅT = 298 K
β = 90.98 (3)°Block, colourless
V = 1237.8 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.558, Tmax = 0.734l = 2020
2389 measured reflections3 standard reflections every 200 reflections
2246 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
2246 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C12H15BrO2V = 1237.8 (4) Å3
Mr = 271.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7370 (19) ŵ = 3.30 mm1
b = 7.2930 (15) ÅT = 298 K
c = 17.433 (4) Å0.20 × 0.10 × 0.10 mm
β = 90.98 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1171 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.558, Tmax = 0.7343 standard reflections every 200 reflections
2389 measured reflections intensity decay: 1%
2246 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
2246 reflectionsΔρmin = 0.56 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.59774 (8)0.20831 (13)0.22133 (4)0.0837 (4)
O10.1885 (4)0.0103 (6)0.0039 (3)0.0702 (14)
H1D0.12160.05610.00990.105*
C10.5163 (8)0.6662 (12)0.2979 (4)0.095 (3)
H1A0.53490.69860.35040.142*
H1B0.48450.77230.27030.142*
H1C0.59880.62120.27510.142*
O20.0282 (4)0.2132 (6)0.0248 (3)0.0621 (12)
C20.4083 (6)0.5204 (10)0.2946 (3)0.0651 (19)
H2A0.32590.56560.31860.078*
H2B0.44020.41450.32340.078*
C30.3738 (6)0.4625 (9)0.2136 (3)0.0456 (15)
C40.4468 (5)0.3321 (9)0.1736 (3)0.0453 (15)
C50.4157 (5)0.2833 (8)0.0980 (3)0.0420 (14)
H5A0.46880.19600.07330.050*
C60.3068 (5)0.3641 (8)0.0596 (3)0.0376 (14)
C70.2310 (6)0.4946 (9)0.0993 (3)0.0551 (17)
H7A0.15690.55210.07510.066*
C80.2650 (6)0.5387 (9)0.1738 (4)0.0585 (18)
H8A0.21150.62510.19870.070*
C90.2652 (6)0.3128 (8)0.0232 (3)0.0458 (15)
C100.3853 (7)0.2252 (10)0.0659 (4)0.069 (2)
H10A0.35620.19510.11730.103*
H10B0.41410.11570.03970.103*
H10C0.46050.31020.06750.103*
C110.2130 (7)0.4781 (9)0.0680 (4)0.067 (2)
H11A0.13680.53160.04190.100*
H11B0.18400.44010.11850.100*
H11C0.28530.56690.07200.100*
C120.1475 (6)0.1738 (8)0.0153 (3)0.0456 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0699 (5)0.1100 (7)0.0703 (5)0.0306 (5)0.0219 (4)0.0089 (5)
O10.055 (3)0.041 (3)0.113 (4)0.007 (2)0.016 (3)0.011 (3)
C10.103 (6)0.102 (7)0.078 (5)0.038 (6)0.012 (5)0.032 (5)
O20.046 (3)0.046 (3)0.094 (3)0.001 (2)0.016 (2)0.007 (2)
C20.063 (4)0.082 (5)0.050 (4)0.007 (4)0.000 (3)0.003 (4)
C30.042 (3)0.053 (4)0.041 (3)0.003 (3)0.002 (3)0.005 (3)
C40.035 (3)0.054 (4)0.047 (3)0.007 (3)0.002 (3)0.010 (3)
C50.041 (3)0.040 (3)0.045 (3)0.004 (3)0.002 (3)0.000 (3)
C60.038 (3)0.036 (3)0.039 (3)0.005 (3)0.001 (3)0.001 (3)
C70.046 (4)0.065 (5)0.054 (4)0.011 (3)0.013 (3)0.006 (4)
C80.059 (4)0.054 (5)0.062 (4)0.009 (3)0.003 (3)0.019 (3)
C90.048 (3)0.048 (4)0.041 (3)0.000 (3)0.005 (3)0.001 (3)
C100.067 (4)0.090 (6)0.049 (4)0.000 (4)0.008 (3)0.009 (4)
C110.089 (5)0.064 (5)0.047 (4)0.014 (4)0.017 (4)0.013 (4)
C120.057 (4)0.034 (4)0.045 (3)0.001 (3)0.011 (3)0.001 (3)
Geometric parameters (Å, º) top
Br—C41.904 (6)C5—H5A0.93
O1—C121.299 (7)C6—C71.395 (8)
O1—H1D0.82C6—C91.539 (7)
C1—C21.496 (9)C7—C81.373 (8)
C1—H1A0.96C7—H7A0.93
C1—H1B0.96C8—H8A0.93
C1—H1C0.96C9—C111.520 (8)
O2—C121.205 (7)C9—C101.536 (9)
C2—C31.505 (8)C9—C121.538 (8)
C2—H2A0.97C10—H10A0.96
C2—H2B0.97C10—H10B0.96
C3—C81.374 (8)C10—H10C0.96
C3—C41.383 (8)C11—H11A0.96
C4—C51.394 (8)C11—H11B0.96
C5—C61.376 (7)C11—H11C0.96
C12—O1—H1D109.5C8—C7—H7A119.7
C2—C1—H1A109.5C6—C7—H7A119.7
C2—C1—H1B109.5C7—C8—C3123.7 (6)
H1A—C1—H1B109.5C7—C8—H8A118.2
C2—C1—H1C109.5C3—C8—H8A118.2
H1A—C1—H1C109.5C11—C9—C10109.3 (5)
H1B—C1—H1C109.5C11—C9—C12109.0 (5)
C1—C2—C3112.4 (6)C10—C9—C12110.1 (5)
C1—C2—H2A109.1C11—C9—C6111.7 (5)
C3—C2—H2A109.1C10—C9—C6111.5 (5)
C1—C2—H2B109.1C12—C9—C6105.1 (4)
C3—C2—H2B109.1C9—C10—H10A109.5
H2A—C2—H2B107.8C9—C10—H10B109.5
C8—C3—C4115.0 (5)H10A—C10—H10B109.5
C8—C3—C2121.2 (6)C9—C10—H10C109.5
C4—C3—C2123.8 (5)H10A—C10—H10C109.5
C3—C4—C5123.2 (5)H10B—C10—H10C109.5
C3—C4—Br120.3 (4)C9—C11—H11A109.5
C5—C4—Br116.5 (5)C9—C11—H11B109.5
C6—C5—C4120.2 (5)H11A—C11—H11B109.5
C6—C5—H5A119.9C9—C11—H11C109.5
C4—C5—H5A119.9H11A—C11—H11C109.5
C5—C6—C7117.5 (5)H11B—C11—H11C109.5
C5—C6—C9122.6 (5)O2—C12—O1123.0 (6)
C7—C6—C9119.9 (5)O2—C12—C9123.3 (5)
C8—C7—C6120.5 (6)O1—C12—C9113.7 (5)
C1—C2—C3—C895.0 (8)C2—C3—C8—C7178.3 (6)
C1—C2—C3—C484.7 (8)C5—C6—C9—C11144.6 (6)
C8—C3—C4—C51.5 (9)C7—C6—C9—C1136.7 (7)
C2—C3—C4—C5178.3 (6)C5—C6—C9—C1022.0 (8)
C8—C3—C4—Br178.4 (4)C7—C6—C9—C10159.4 (6)
C2—C3—C4—Br1.9 (8)C5—C6—C9—C1297.3 (6)
C3—C4—C5—C60.9 (9)C7—C6—C9—C1281.4 (6)
Br—C4—C5—C6178.9 (4)C11—C9—C12—O218.2 (8)
C4—C5—C6—C70.2 (8)C10—C9—C12—O2138.1 (6)
C4—C5—C6—C9178.5 (5)C6—C9—C12—O2101.7 (6)
C5—C6—C7—C80.2 (9)C11—C9—C12—O1163.1 (5)
C9—C6—C7—C8178.5 (6)C10—C9—C12—O143.2 (7)
C6—C7—C8—C30.9 (11)C6—C9—C12—O177.0 (6)
C4—C3—C8—C71.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···O2i0.821.882.696 (6)178
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC12H15BrO2
Mr271.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.7370 (19), 7.2930 (15), 17.433 (4)
β (°) 90.98 (3)
V3)1237.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.558, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
2389, 2246, 1171
Rint0.051
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.157, 1.00
No. of reflections2246
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.56

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···O2i0.821.882.696 (6)178
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiegand, J. M. C., Schafer, C., Palaoro, M., Skranc, W. & Maurer, O. (2007). WO Patent No. 2007096034.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds