organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Fluoro­phen­yl)-1-phenyl-2-propen-1-one

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: jlhjhr@yahoo.com.cn

(Received 16 September 2009; accepted 17 September 2009; online 26 September 2009)

In the title compound, C15H11FO, the configuration of the keto group with respect to the olefinic double bond is s–cis. The dihedral angle between the planes of the two benzene rings is 10.61 (10)°. The crystal packing is stabilized by C—H⋯π inter­actions involving both benzene rings.

Related literature

For the synthesis, see: Chimenti et al. (2008[Chimenti, F., Fioravanti, R., Bolasco, A., Manna, F., Chimenti, P., Secci, D., Rossi, F., Turini, P., Ortuso, F., Alcaro, S. & Cardia, M. C. (2008). Eur. J. Med. Chem. 43, 2262-2267.]). For the biological activity of chalcone derivatives, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO

  • Mr = 226.24

  • Monoclinic, C c

  • a = 24.926 (9) Å

  • b = 5.6940 (19) Å

  • c = 7.749 (3) Å

  • β = 94.747 (5)°

  • V = 1096.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.40 × 0.33 × 0.30 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 4214 measured reflections

  • 1256 independent reflections

  • 1174 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.066

  • S = 1.05

  • 1256 reflections

  • 154 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 0.95 2.89 3.592 (3) 132
C4—H4⋯Cg1ii 0.95 2.93 3.646 (6) 133
C12—H12⋯Cg2iii 0.95 2.85 3.505 (8) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{5\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z-1]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-1]. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcone derivatives are a class of important compounds that possess antiprotzoal, antihelmintic, amoebicidal, anti-ulcer, antiviral, insecticidal, antibacterial, anticancer, cytotoxic and immunosuppressive activities (Dimmock et al., 1999). The author reports here the crystal structure of the title compound, a chalocone derivative.

Bond lengths and angles in the title molecule (Fig.1) are normal. The configuration of the keto group with respect to the olefinic double bond is s-cis, with a O1—C7—C8—C9 torsion angle of -7.1 (3)°. The C1-C6 and C10-C15 benzene rings form a dihedral angle of 10.61 (10)°.

The crystal packing is stabilized by C—H···π interactions involving both benzene rings (Table 1; Cg1 and Cg2 are centroids of the C1-C6 and C10-C15 rings, respectively).

Related literature top

For the synthesis, see: Chimenti et al. (2008). For the biological activity of chalcone derivatives, see: Dimmock et al. (1999).

Experimental top

The title compound was synthesized according to the method reported in the literature (Chimenti et al., 2008). Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of a acetone solution of the compound.

Refinement top

H atoms were placed in calculated positions, with C-H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
(E)-3-(4-Fluorophenyl)-1-phenyl-2-propen-1-one top
Crystal data top
C15H11FOF(000) = 472
Mr = 226.24Dx = 1.371 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1803 reflections
a = 24.926 (9) Åθ = 3.2–27.5°
b = 5.6940 (19) ŵ = 0.10 mm1
c = 7.749 (3) ÅT = 93 K
β = 94.747 (5)°Block, colourless
V = 1096.0 (6) Å30.40 × 0.33 × 0.30 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
1174 reflections with I > 2σ(I)
Radiation source: Rotating anodeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 3232
4214 measured reflectionsk = 76
1256 independent reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.02P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
1256 reflections(Δ/σ)max = 0.010
154 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H11FOV = 1096.0 (6) Å3
Mr = 226.24Z = 4
Monoclinic, CcMo Kα radiation
a = 24.926 (9) ŵ = 0.10 mm1
b = 5.6940 (19) ÅT = 93 K
c = 7.749 (3) Å0.40 × 0.33 × 0.30 mm
β = 94.747 (5)°
Data collection top
Rigaku SPIDER
diffractometer
1174 reflections with I > 2σ(I)
4214 measured reflectionsRint = 0.027
1256 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
1256 reflectionsΔρmin = 0.14 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.78252 (5)0.0769 (2)0.41272 (15)0.0283 (3)
O10.54146 (6)0.8936 (3)0.5750 (2)0.0298 (4)
C10.43870 (9)0.9349 (4)0.4181 (3)0.0201 (5)
H10.45261.05840.49120.024*
C20.38614 (9)0.9458 (4)0.3436 (3)0.0224 (5)
H20.36421.07670.36600.027*
C30.36564 (8)0.7667 (4)0.2369 (3)0.0220 (5)
H30.32960.77490.18680.026*
C40.39742 (9)0.5758 (4)0.2026 (3)0.0222 (5)
H40.38340.45390.12820.027*
C50.45022 (9)0.5632 (4)0.2780 (3)0.0205 (5)
H50.47200.43150.25550.025*
C60.47111 (8)0.7420 (4)0.3855 (3)0.0180 (4)
C70.52705 (8)0.7380 (4)0.4726 (3)0.0205 (4)
C80.56390 (9)0.5435 (4)0.4363 (3)0.0217 (5)
H80.55120.41420.36690.026*
C90.61504 (8)0.5513 (4)0.5016 (3)0.0199 (4)
H90.62500.68360.57180.024*
C100.65773 (9)0.3806 (4)0.4783 (3)0.0185 (4)
C110.64836 (9)0.1657 (4)0.3938 (3)0.0214 (5)
H110.61270.12390.35260.026*
C120.69023 (9)0.0130 (4)0.3692 (3)0.0225 (5)
H120.68380.13100.30910.027*
C130.74170 (9)0.0754 (4)0.4343 (3)0.0211 (5)
C140.75290 (8)0.2834 (4)0.5203 (3)0.0212 (4)
H140.78860.32160.56350.025*
C150.71063 (9)0.4355 (4)0.5420 (3)0.0207 (4)
H150.71760.57990.60120.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0222 (7)0.0284 (7)0.0342 (8)0.0079 (6)0.0022 (5)0.0009 (6)
O10.0228 (8)0.0330 (9)0.0326 (9)0.0047 (7)0.0034 (7)0.0121 (8)
C10.0228 (11)0.0192 (11)0.0185 (11)0.0002 (9)0.0021 (8)0.0011 (9)
C20.0221 (11)0.0227 (11)0.0227 (11)0.0043 (9)0.0032 (9)0.0017 (9)
C30.0177 (10)0.0265 (11)0.0218 (11)0.0006 (9)0.0017 (9)0.0031 (9)
C40.0218 (11)0.0232 (11)0.0215 (11)0.0036 (9)0.0012 (8)0.0011 (9)
C50.0218 (11)0.0205 (11)0.0196 (10)0.0027 (9)0.0046 (9)0.0002 (9)
C60.0177 (10)0.0206 (11)0.0161 (10)0.0007 (8)0.0031 (8)0.0028 (8)
C70.0187 (10)0.0230 (11)0.0199 (10)0.0001 (9)0.0026 (8)0.0005 (9)
C80.0228 (10)0.0215 (11)0.0206 (10)0.0014 (9)0.0012 (8)0.0019 (9)
C90.0209 (10)0.0209 (11)0.0178 (10)0.0023 (9)0.0012 (8)0.0003 (9)
C100.0179 (10)0.0210 (10)0.0163 (10)0.0021 (9)0.0004 (8)0.0033 (9)
C110.0177 (10)0.0249 (11)0.0211 (11)0.0018 (9)0.0013 (8)0.0021 (9)
C120.0247 (11)0.0222 (11)0.0206 (11)0.0014 (9)0.0012 (9)0.0005 (9)
C130.0191 (11)0.0229 (11)0.0217 (12)0.0047 (9)0.0040 (8)0.0042 (9)
C140.0155 (10)0.0259 (11)0.0218 (10)0.0017 (9)0.0005 (8)0.0030 (10)
C150.0214 (11)0.0204 (10)0.0199 (11)0.0005 (9)0.0009 (8)0.0004 (9)
Geometric parameters (Å, º) top
F1—C131.358 (2)C8—C91.333 (3)
O1—C71.223 (3)C8—H80.95
C1—C21.389 (3)C9—C101.463 (3)
C1—C61.399 (3)C9—H90.95
C1—H10.95C10—C111.398 (3)
C2—C31.384 (3)C10—C151.404 (3)
C2—H20.95C11—C121.383 (3)
C3—C41.384 (3)C11—H110.95
C3—H30.95C12—C131.386 (3)
C4—C51.397 (3)C12—H120.95
C4—H40.95C13—C141.376 (3)
C5—C61.389 (3)C14—C151.385 (3)
C5—H50.95C14—H140.95
C6—C71.498 (3)C15—H150.95
C7—C81.481 (3)
C2—C1—C6119.9 (2)C7—C8—H8120.3
C2—C1—H1120.0C8—C9—C10127.8 (2)
C6—C1—H1120.0C8—C9—H9116.1
C3—C2—C1120.3 (2)C10—C9—H9116.1
C3—C2—H2119.8C11—C10—C15118.37 (19)
C1—C2—H2119.8C11—C10—C9122.95 (19)
C2—C3—C4120.3 (2)C15—C10—C9118.68 (19)
C2—C3—H3119.8C12—C11—C10121.0 (2)
C4—C3—H3119.8C12—C11—H11119.5
C3—C4—C5119.6 (2)C10—C11—H11119.5
C3—C4—H4120.2C11—C12—C13118.4 (2)
C5—C4—H4120.2C11—C12—H12120.8
C6—C5—C4120.43 (19)C13—C12—H12120.8
C6—C5—H5119.8F1—C13—C14119.03 (19)
C4—C5—H5119.8F1—C13—C12118.19 (19)
C5—C6—C1119.37 (19)C14—C13—C12122.8 (2)
C5—C6—C7123.20 (18)C13—C14—C15118.11 (19)
C1—C6—C7117.42 (18)C13—C14—H14120.9
O1—C7—C8120.79 (19)C15—C14—H14120.9
O1—C7—C6119.56 (19)C14—C15—C10121.3 (2)
C8—C7—C6119.64 (18)C14—C15—H15119.3
C9—C8—C7119.4 (2)C10—C15—H15119.3
C9—C8—H8120.3
C6—C1—C2—C30.1 (3)C7—C8—C9—C10178.7 (2)
C1—C2—C3—C40.3 (3)C8—C9—C10—C116.7 (3)
C2—C3—C4—C50.7 (3)C8—C9—C10—C15172.6 (2)
C3—C4—C5—C60.6 (3)C15—C10—C11—C121.7 (3)
C4—C5—C6—C10.2 (3)C9—C10—C11—C12177.7 (2)
C4—C5—C6—C7179.0 (2)C10—C11—C12—C131.6 (3)
C2—C1—C6—C50.2 (3)C11—C12—C13—F1178.78 (19)
C2—C1—C6—C7178.7 (2)C11—C12—C13—C140.8 (3)
C5—C6—C7—O1175.0 (2)F1—C13—C14—C15179.54 (18)
C1—C6—C7—O13.9 (3)C12—C13—C14—C150.0 (3)
C5—C6—C7—C84.0 (3)C13—C14—C15—C100.1 (3)
C1—C6—C7—C8177.2 (2)C11—C10—C15—C140.9 (3)
O1—C7—C8—C97.1 (3)C9—C10—C15—C14178.5 (2)
C6—C7—C8—C9174.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.952.893.592 (3)132
C4—H4···Cg1ii0.952.933.646 (6)133
C12—H12···Cg2iii0.952.853.505 (8)127
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+3/2, z1; (iii) x+1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formulaC15H11FO
Mr226.24
Crystal system, space groupMonoclinic, Cc
Temperature (K)93
a, b, c (Å)24.926 (9), 5.6940 (19), 7.749 (3)
β (°) 94.747 (5)
V3)1096.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.33 × 0.30
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4214, 1256, 1174
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.05
No. of reflections1256
No. of parameters154
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.952.893.592 (3)132
C4—H4···Cg1ii0.952.933.646 (6)133
C12—H12···Cg2iii0.952.853.505 (8)127
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+3/2, z1; (iii) x+1/2, y+1/2, z1.
 

Acknowledgements

The author thanks the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

References

First citationChimenti, F., Fioravanti, R., Bolasco, A., Manna, F., Chimenti, P., Secci, D., Rossi, F., Turini, P., Ortuso, F., Alcaro, S. & Cardia, M. C. (2008). Eur. J. Med. Chem. 43, 2262–2267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds