organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,10-Phenanthrolinium 2′-carb­oxy­bi­phenyl-2-carboxyl­ate

aSchool of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, 100044 Beijing, People's Republic of China
*Correspondence e-mail: chongchenwang@126.com

(Received 3 August 2009; accepted 9 September 2009; online 16 September 2009)

The title complex, C12H9N2+·C14H9O4 or (Hphen)+(Hbptc) [H2btc = 2,2′-biphenyl­dicarboxylic acid and phen = 1,10-phenanthroline], has been synthesized under hydro­thermal conditions. The compound is composed of discrete cations (Hphen)+ and anions (Hbptc), which are linked by electrovalent bonding; the molecular and crystal structures are further strengthened by intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the applications of the metal-organic coordination compounds constructed from biphenydicarboxylic acid, see: Gao & Cheng (2004[Gao, H.-W. & Cheng, P. (2004). Chin. J. Inorg. Chem. 20, 1145-1149.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2+·C14H9O4

  • Mr = 422.42

  • Monoclinic, P 21 /c

  • a = 12.1661 (13) Å

  • b = 7.389 (1) Å

  • c = 22.160 (2) Å

  • β = 91.061 (1)°

  • V = 1991.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.48 × 0.45 × 0.37 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.965

  • 9415 measured reflections

  • 3479 independent reflections

  • 1771 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.243

  • S = 1.01

  • 3479 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.82 2.643 (4) 161
O3—H3⋯O1 0.82 1.75 2.559 (4) 172
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-phenanthroline and 2,2'-biphenyldicarboxylic acid are both versatile ligands, which have been used in the self-assembly of various coordination compounds. The crystals of the title compound were obtained unintentionally as the harvested product of the hydrothermal reaction between Ce2O3 and 1,10-phenanthroline in the presence of 2,2'-biphenyldicarboxylic acid.

In the crystal of the title compound, 1,10-phenanthroline is protonated into the cation 1,10-phenanthrolinium [(Hphen)+], as indicated by the presence of a peak of electron density on the difference Fourier map at an appropriate distance from N1. The 2,2'-biphenydicarboxylic acid has been deprotonated into the anion biphenyldicarboxylate [(Hbptc)-], with the similar C—O distances on the deprotonated carboxylate indicating delocalisation (O1—C1=1.274 (5); O2—C1=1.221 (5)Å), whereas the C—O distances in the carboxylic acid group (O3—C14=1.315 (5); O4—C14=1.197 (5) Å) correspond to single and double bonds, respectively. The discrete cations (Hphen)+ and anions (Hbptc)- are linked by an electrovalent bond, and further strengthened by intermolecular N1—H1···O1i(Symmetry operator, i: -x + 1, y + 1/2, -z + 1/2) and intramolecular O3—H3···O1 hydrogen bonds.

The phenyl rings of the 2,2'-biphenyldicarboxylate are not coplanar, but twisted almost perpendicular to each other with a dihedral angle between the planes through the two rings of 86.06(0.13) °.

Related literature top

For the applications of the metal-organic coordination compounds constructed from biphenydicarboxylic acid, see: Gao & Cheng (2004).

Experimental top

The mixture of 2,2'-biphenydicarboxylic acid (0.04884 g), 1,10-phenanthroline (0.0360 g), Ce2O3 (0.0702 g) and deionized water (15 ml) was heated in a 23 ml teflon-lined reaction vessel at 433 K for 120 h to carry out the hydrothermal reaction. After slow cooling to room temperature the mixture was filtered, and the clear solution obtained was allowed to evaporate slowly at room temperature. After about 10 days, yellow block-like crystals of the title compound were harvested.

Refinement top

The positions of the hydrogen atoms on O3 and N1 were identified from a difference Fourier map. All H atoms were then fixed geometrically and allowed to ride on their parent carbon atoms, with C—H distances of 0.93 Å, an N—H distance of 0.86 Å and an O—H distance of 0.82 Å; and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing the atom labelling scheme. Ellipsoids are drawn at the 30% level.
[Figure 2] Fig. 2. The crystal packing of the title complex. Hydrogen bonds are indicated by dashed lines.
1,10-Phenanthrolinium 2'-carboxybiphenyl-2-carboxylate top
Crystal data top
C12H9N2+·C14H9O4F(000) = 880
Mr = 422.42Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1661 (13) ÅCell parameters from 1541 reflections
b = 7.389 (1) Åθ = 2.5–21.4°
c = 22.160 (2) ŵ = 0.10 mm1
β = 91.061 (1)°T = 298 K
V = 1991.8 (4) Å3Block, brown
Z = 40.48 × 0.45 × 0.37 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3479 independent reflections
Radiation source: fine-focus sealed tube1771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.955, Tmax = 0.965k = 87
9415 measured reflectionsl = 2226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.243H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0849P)2 + 0.7223P]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H9N2+·C14H9O4V = 1991.8 (4) Å3
Mr = 422.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1661 (13) ŵ = 0.10 mm1
b = 7.389 (1) ÅT = 298 K
c = 22.160 (2) Å0.48 × 0.45 × 0.37 mm
β = 91.061 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
3479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1771 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.965Rint = 0.102
9415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.243H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
3479 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4893 (3)0.7686 (4)0.46216 (17)0.0382 (9)
H10.54620.81700.44640.046*
N20.6719 (3)0.8548 (5)0.52863 (18)0.0486 (11)
O10.3597 (2)0.4014 (4)0.10974 (14)0.0472 (8)
O20.4735 (2)0.3641 (5)0.18797 (16)0.0674 (11)
O30.1925 (2)0.5887 (4)0.07606 (14)0.0491 (9)
H30.24190.52100.08780.074*
O40.0140 (3)0.5855 (4)0.06817 (18)0.0685 (11)
C10.3850 (3)0.4087 (6)0.1657 (2)0.0411 (11)
C20.3001 (3)0.4868 (5)0.20651 (19)0.0349 (10)
C30.3300 (3)0.6209 (6)0.2472 (2)0.0447 (12)
H3A0.40310.65730.24980.054*
C40.2558 (4)0.7001 (6)0.2831 (2)0.0493 (12)
H40.27800.79160.30950.059*
C50.1464 (4)0.6457 (6)0.2811 (2)0.0505 (13)
H50.09500.70020.30570.061*
C60.1159 (3)0.5112 (6)0.2422 (2)0.0438 (11)
H60.04330.47140.24170.053*
C70.1900 (3)0.4322 (5)0.20367 (19)0.0344 (10)
C80.1484 (3)0.2851 (5)0.1628 (2)0.0347 (10)
C90.1496 (3)0.1076 (6)0.1828 (2)0.0442 (12)
H90.18200.07870.21990.053*
C100.1030 (4)0.0250 (6)0.1479 (2)0.0505 (13)
H100.10740.14470.16070.061*
C110.0497 (4)0.0149 (6)0.0943 (2)0.0548 (13)
H110.01560.07620.07180.066*
C120.0474 (3)0.1894 (6)0.0745 (2)0.0466 (12)
H120.01160.21770.03830.056*
C130.0983 (3)0.3256 (5)0.1082 (2)0.0358 (10)
C140.0970 (3)0.5087 (6)0.0828 (2)0.0413 (11)
C150.4040 (3)0.7289 (6)0.4267 (2)0.0461 (12)
H150.40630.75340.38560.055*
C160.3115 (3)0.6510 (6)0.4508 (3)0.0526 (14)
H160.25070.62480.42630.063*
C170.3104 (4)0.6130 (6)0.5107 (3)0.0517 (13)
H170.24850.55920.52700.062*
C180.4003 (3)0.6533 (5)0.5482 (2)0.0417 (11)
C190.4904 (3)0.7367 (5)0.5213 (2)0.0371 (11)
C200.5865 (3)0.7782 (6)0.5575 (2)0.0421 (11)
C210.5874 (4)0.7370 (6)0.6186 (2)0.0503 (13)
C220.6842 (5)0.7747 (7)0.6519 (2)0.0632 (15)
H220.68930.74970.69300.076*
C230.7701 (4)0.8488 (7)0.6223 (3)0.0667 (16)
H230.83540.87360.64310.080*
C240.7609 (4)0.8868 (7)0.5623 (2)0.0568 (14)
H240.82110.93860.54360.068*
C250.4055 (4)0.6151 (7)0.6106 (3)0.0570 (14)
H250.34500.56220.62870.068*
C260.4940 (4)0.6525 (7)0.6443 (3)0.0590 (14)
H260.49510.62310.68510.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (18)0.044 (2)0.046 (3)0.0031 (15)0.0015 (16)0.0019 (18)
N20.033 (2)0.061 (3)0.052 (3)0.0009 (18)0.0029 (18)0.0035 (19)
O10.0283 (16)0.074 (2)0.039 (2)0.0077 (14)0.0005 (14)0.0034 (17)
O20.0330 (18)0.106 (3)0.063 (3)0.0231 (18)0.0067 (16)0.001 (2)
O30.0361 (17)0.0474 (18)0.064 (2)0.0008 (14)0.0022 (15)0.0129 (16)
O40.0416 (19)0.052 (2)0.111 (3)0.0062 (16)0.0257 (19)0.004 (2)
C10.026 (2)0.047 (3)0.050 (3)0.0011 (19)0.005 (2)0.001 (2)
C20.029 (2)0.037 (2)0.038 (3)0.0025 (18)0.0028 (18)0.001 (2)
C30.031 (2)0.053 (3)0.050 (3)0.005 (2)0.009 (2)0.003 (2)
C40.056 (3)0.047 (3)0.045 (3)0.007 (2)0.009 (2)0.008 (2)
C50.041 (3)0.059 (3)0.051 (3)0.007 (2)0.001 (2)0.012 (2)
C60.032 (2)0.052 (3)0.047 (3)0.004 (2)0.003 (2)0.002 (2)
C70.027 (2)0.038 (2)0.038 (3)0.0013 (18)0.0018 (18)0.0033 (19)
C80.024 (2)0.034 (2)0.046 (3)0.0014 (17)0.0036 (19)0.004 (2)
C90.038 (2)0.042 (3)0.053 (3)0.001 (2)0.003 (2)0.001 (2)
C100.055 (3)0.034 (3)0.063 (4)0.000 (2)0.012 (3)0.001 (2)
C110.055 (3)0.044 (3)0.065 (4)0.010 (2)0.002 (3)0.014 (3)
C120.038 (3)0.043 (3)0.059 (4)0.004 (2)0.002 (2)0.011 (2)
C130.026 (2)0.037 (2)0.044 (3)0.0005 (18)0.0017 (19)0.001 (2)
C140.033 (3)0.042 (3)0.049 (3)0.002 (2)0.009 (2)0.007 (2)
C150.033 (2)0.051 (3)0.055 (3)0.001 (2)0.005 (2)0.000 (2)
C160.026 (2)0.059 (3)0.073 (4)0.007 (2)0.000 (2)0.011 (3)
C170.038 (3)0.046 (3)0.072 (4)0.005 (2)0.016 (3)0.008 (3)
C180.038 (3)0.035 (2)0.053 (3)0.0052 (19)0.013 (2)0.001 (2)
C190.032 (2)0.035 (2)0.044 (3)0.0055 (18)0.005 (2)0.001 (2)
C200.039 (3)0.038 (2)0.049 (3)0.011 (2)0.004 (2)0.002 (2)
C210.061 (3)0.045 (3)0.045 (3)0.010 (2)0.000 (2)0.000 (2)
C220.073 (4)0.072 (4)0.045 (4)0.010 (3)0.009 (3)0.002 (3)
C230.055 (3)0.083 (4)0.062 (4)0.000 (3)0.012 (3)0.001 (3)
C240.038 (3)0.073 (4)0.059 (4)0.002 (2)0.009 (2)0.002 (3)
C250.055 (3)0.056 (3)0.061 (4)0.007 (3)0.021 (3)0.009 (3)
C260.068 (4)0.060 (3)0.050 (4)0.015 (3)0.016 (3)0.012 (3)
Geometric parameters (Å, º) top
N1—C151.324 (5)C10—H100.9300
N1—C191.332 (5)C11—C121.363 (6)
N1—H10.8600C11—H110.9300
N2—C241.324 (6)C12—C131.392 (6)
N2—C201.354 (5)C12—H120.9300
O1—C11.274 (5)C13—C141.465 (6)
O2—C11.221 (5)C15—C161.380 (6)
O3—C141.315 (5)C15—H150.9300
O3—H30.8200C16—C171.356 (7)
O4—C141.197 (5)C16—H160.9300
C1—C21.501 (6)C17—C181.395 (6)
C2—C31.384 (6)C17—H170.9300
C2—C71.399 (5)C18—C191.401 (6)
C3—C41.348 (6)C18—C251.412 (7)
C3—H3A0.9300C19—C201.437 (6)
C4—C51.391 (6)C20—C211.390 (7)
C4—H40.9300C21—C221.406 (7)
C5—C61.361 (6)C21—C261.424 (7)
C5—H50.9300C22—C231.359 (7)
C6—C71.383 (6)C22—H220.9300
C6—H60.9300C23—C241.363 (7)
C7—C81.497 (6)C23—H230.9300
C8—C131.379 (6)C24—H240.9300
C8—C91.384 (6)C25—C261.328 (7)
C9—C101.364 (6)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—C111.376 (7)
C15—N1—C19122.6 (4)C8—C13—C14122.6 (4)
C15—N1—H1118.7C12—C13—C14117.4 (4)
C19—N1—H1118.7O4—C14—O3119.9 (4)
C24—N2—C20115.8 (4)O4—C14—C13123.0 (4)
C14—O3—H3109.5O3—C14—C13117.1 (4)
O2—C1—O1125.2 (4)N1—C15—C16119.9 (5)
O2—C1—C2118.2 (4)N1—C15—H15120.1
O1—C1—C2116.5 (4)C16—C15—H15120.1
C3—C2—C7118.4 (4)C17—C16—C15119.3 (4)
C3—C2—C1119.5 (4)C17—C16—H16120.4
C7—C2—C1122.1 (4)C15—C16—H16120.4
C4—C3—C2121.7 (4)C16—C17—C18121.1 (4)
C4—C3—H3A119.2C16—C17—H17119.4
C2—C3—H3A119.2C18—C17—H17119.4
C3—C4—C5120.4 (4)C17—C18—C19116.9 (5)
C3—C4—H4119.8C17—C18—C25124.2 (5)
C5—C4—H4119.8C19—C18—C25118.9 (4)
C6—C5—C4118.8 (4)N1—C19—C18120.2 (4)
C6—C5—H5120.6N1—C19—C20120.3 (4)
C4—C5—H5120.6C18—C19—C20119.4 (4)
C5—C6—C7121.7 (4)N2—C20—C21124.1 (4)
C5—C6—H6119.2N2—C20—C19116.7 (4)
C7—C6—H6119.2C21—C20—C19119.2 (4)
C6—C7—C2119.0 (4)C20—C21—C22117.4 (5)
C6—C7—C8117.6 (3)C20—C21—C26119.6 (5)
C2—C7—C8123.4 (4)C22—C21—C26123.0 (5)
C13—C8—C9119.2 (4)C23—C22—C21118.1 (5)
C13—C8—C7120.8 (4)C23—C22—H22121.0
C9—C8—C7119.6 (4)C21—C22—H22121.0
C10—C9—C8119.9 (5)C22—C23—C24120.3 (5)
C10—C9—H9120.1C22—C23—H23119.9
C8—C9—H9120.1C24—C23—H23119.9
C9—C10—C11121.3 (4)N2—C24—C23124.4 (5)
C9—C10—H10119.4N2—C24—H24117.8
C11—C10—H10119.4C23—C24—H24117.8
C12—C11—C10119.2 (4)C26—C25—C18122.0 (5)
C12—C11—H11120.4C26—C25—H25119.0
C10—C11—H11120.4C18—C25—H25119.0
C11—C12—C13120.3 (5)C25—C26—C21120.8 (5)
C11—C12—H12119.8C25—C26—H26119.6
C13—C12—H12119.8C21—C26—H26119.6
C8—C13—C12120.0 (4)
O2—C1—C2—C347.2 (6)C12—C13—C14—O3123.8 (4)
O1—C1—C2—C3130.0 (4)C19—N1—C15—C160.1 (6)
O2—C1—C2—C7134.7 (5)N1—C15—C16—C171.3 (7)
O1—C1—C2—C748.1 (6)C15—C16—C17—C180.8 (7)
C7—C2—C3—C40.8 (7)C16—C17—C18—C190.9 (6)
C1—C2—C3—C4177.4 (4)C16—C17—C18—C25179.0 (4)
C2—C3—C4—C51.3 (7)C15—N1—C19—C181.9 (6)
C3—C4—C5—C60.1 (7)C15—N1—C19—C20178.3 (4)
C4—C5—C6—C72.2 (7)C17—C18—C19—N12.2 (6)
C5—C6—C7—C22.7 (7)C25—C18—C19—N1177.7 (4)
C5—C6—C7—C8179.9 (4)C17—C18—C19—C20178.7 (4)
C3—C2—C7—C61.2 (6)C25—C18—C19—C201.2 (6)
C1—C2—C7—C6179.4 (4)C24—N2—C20—C211.4 (6)
C3—C2—C7—C8178.2 (4)C24—N2—C20—C19177.9 (4)
C1—C2—C7—C83.7 (6)N1—C19—C20—N21.9 (6)
C6—C7—C8—C1384.8 (5)C18—C19—C20—N2178.4 (4)
C2—C7—C8—C1398.2 (5)N1—C19—C20—C21177.4 (4)
C6—C7—C8—C988.3 (5)C18—C19—C20—C210.9 (6)
C2—C7—C8—C988.7 (5)N2—C20—C21—C221.2 (7)
C13—C8—C9—C101.1 (6)C19—C20—C21—C22178.1 (4)
C7—C8—C9—C10174.3 (4)N2—C20—C21—C26178.5 (4)
C8—C9—C10—C113.2 (7)C19—C20—C21—C260.8 (6)
C9—C10—C11—C122.8 (7)C20—C21—C22—C230.0 (7)
C10—C11—C12—C130.1 (7)C26—C21—C22—C23177.2 (5)
C9—C8—C13—C121.5 (6)C21—C22—C23—C240.9 (8)
C7—C8—C13—C12171.6 (4)C20—N2—C24—C230.4 (7)
C9—C8—C13—C14177.7 (4)C22—C23—C24—N20.7 (8)
C7—C8—C13—C149.2 (6)C17—C18—C25—C26178.5 (4)
C11—C12—C13—C82.0 (6)C19—C18—C25—C261.4 (7)
C11—C12—C13—C14177.2 (4)C18—C25—C26—C211.3 (7)
C8—C13—C14—O4124.9 (5)C20—C21—C26—C251.0 (7)
C12—C13—C14—O455.9 (6)C22—C21—C26—C25178.2 (5)
C8—C13—C14—O355.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.822.643 (4)161
O3—H3···O10.821.752.559 (4)172
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9N2+·C14H9O4
Mr422.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.1661 (13), 7.389 (1), 22.160 (2)
β (°) 91.061 (1)
V3)1991.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.45 × 0.37
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.955, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9415, 3479, 1771
Rint0.102
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.243, 1.01
No. of reflections3479
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—C11.274 (5)O3—C141.315 (5)
O2—C11.221 (5)O4—C141.197 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.822.643 (4)160.8
O3—H3···O10.821.752.559 (4)171.8
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author gratefully acknowledges the financial support of the Research Fund of Beijing University of Civil Engineering and Architecture, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, H.-W. & Cheng, P. (2004). Chin. J. Inorg. Chem. 20, 1145–1149.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds