metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(imidazole-κN3)bis­­(nitrato-κO)zinc(II)

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cCampus Universitaire, Département de Chimie, Faculté des Sciences, Université de Tunis, 1060 Tunis, Tunisia
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 10 September 2009; accepted 17 September 2009; online 26 September 2009)

The title complex, [Zn(NO3)2(C3H4N2)2], contains a ZnII centre with a slightly distorted tetra­hedral coordination environment, involving two N atoms from imidazole ligands and two O atoms from nitrate anions. The imino NH groups participate in inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li et al. (2007[Li, J., Noll, B. C. & Scheidt, W. R. (2007). Acta Cryst. E63, m1048-m1049.]); Xie et al. (2009[Xie, Q.-A., Dong, G.-Y., Yu, Y.-M. & Wang, Y.-G. (2009). Acta Cryst. E65, m576.]); He et al. (2007[He, K.-H., Li, J.-M. & Jiang, Y.-M. (2007). Acta Cryst. E63, m2992-m2993.]); Shaw et al. (2009[Shaw, J. L., Gwaltney, K. P. & Keer, N. (2009). Inorg. Chim. Acta, 362, 2396-2401.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NO3)2(C3H4N2)2]

  • Mr = 325.55

  • Triclinic, [P \overline 1]

  • a = 7.785 (6) Å

  • b = 8.126 (2) Å

  • c = 11.394 (2) Å

  • α = 92.36 (2)°

  • β = 99.67 (4)°

  • γ = 96.32 (7)°

  • V = 704.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3798 measured reflections

  • 3068 independent reflections

  • 2733 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.07

  • 3068 reflections

  • 173 parameters

  • H-atom parameters not refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O4 1.966 (3)
Zn1—O1 1.999 (3)
Zn1—N3 2.011 (3)
Zn1—N5 2.015 (3)
O4—Zn1—O1 104.93 (12)
O4—Zn1—N3 113.61 (12)
O1—Zn1—N3 113.00 (11)
O4—Zn1—N5 95.75 (11)
O1—Zn1—N5 118.25 (12)
N3—Zn1—N5 110.03 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1i 0.86 1.96 2.808 (4) 170
N6—H6N⋯O6ii 0.86 1.91 2.741 (4) 161
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, contains a ZnII cation, two imidazole ligands and two nitrate anions acting as monodentate ligands (Fig. 1). In the molecule the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two imidazole molecules and two O atoms from monodentate two nitrate groups (Table 1). The angles O4—Zn—N5 and O1—Zn—O4 are reduced while all the others angles are increased in comparison with the ideal tetrahedral angle of 109.5° (Li et al., 2007) The values of Zn–N distances, 2.011 (3) and 2.015 (3) Å, are little far to that found for tris(2-ethyl-1H-imidazole-κN3)(terephthalato-κO)zinc(II) (Xie et al. 2009) and bis(1H-imidazole-κN3)[(2-oxidobenzylideneamino)methanesulfonato-κ2N,O]zinc(II) (He et al. 2007). The Zn—O coordinating distances of 1.966 (4) and 1.999 (3) Å are comparable of those found in diphenyldipyrazolylmethane complexes with zinc(II) (Shaw et al. 2009). The mononuclear complex is joined into a two-dimensional layer by N—H···O type hydrogen-bonds; details have been provided in Table 2.

Related literature top

For related structures, see: Li et al. (2007); Xie et al. (2009); He et al. (2007); Shaw et al. (2009).

Experimental top

Zinc(II) acetate dihydrate (0.1320 g; 0.6 mmol) and lanthanum nitrate hexahydrate (0.0433 g; 0.01 mmol) were dissolved in 10 ml of a mixture of water and methanol (1/2). To this solution was added imidazole (0.0408 g; 0.6 mmol) and tartaric acid (0.0900 g; 0.6 mmol) dissolved in 12 ml of an aqueous NaOH 0.1 M solution. After 120 m of stirring, a solution of tartaric acid (0.0900 g; 0.6 mmlol) in 5 ml of methanol was added again. The reaction mixture give white solid which was filtered and dried in air. The filtrate was left to crystallize. The crystals of (I) which formed were filtered off and dried [yield 82%]. Analysis calculated for [Zn(C3H4N2)2(NO3)2]: C 22.14, H 2.48, N 25.81%; found: C 22.09, H 2.46, N 25.78%. Spectroscopic analysis, IR (ν, cm-1): 3111, 3058, 1621, 1603, 1571, 1543, 1449, 1332 and 1072. The IR spectra were recorded with a Nicolet Magna 760 IR spectrophotometer in KBr pellets.

Refinement top

All H atoms were placed geometrically and refined with a riding model. Uiso(H) for H was assigned as 1.2Ueq of the attached C atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CAD-4 EXPRESS (Enraf–Nonius, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the title compound, showing the atom-numbering scheme (for all no H-atoms). Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. Molecular representation of the compound showing hydrogen bonds. The broken lines indicate hydrogen bonds.
Bis(imidazole-κN3)bis(nitrato-κO)zinc(II) top
Crystal data top
[Zn(NO3)2(C3H4N2)2]Z = 2
Mr = 325.55F(000) = 328
Triclinic, P1Dx = 1.534 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.785 (6) ÅCell parameters from 25 reflections
b = 8.126 (2) Åθ = 11–15°
c = 11.394 (2) ŵ = 1.77 mm1
α = 92.36 (2)°T = 293 K
β = 99.67 (4)°Prism, colourless
γ = 96.32 (7)°0.1 × 0.1 × 0.1 mm
V = 704.9 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2733 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.0°, θmin = 2.5°
ω scansh = 92
3798 measured reflectionsk = 1010
3068 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters not refined
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.6727P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
3068 reflectionsΔρmax = 0.53 e Å3
173 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
[Zn(NO3)2(C3H4N2)2]γ = 96.32 (7)°
Mr = 325.55V = 704.9 (6) Å3
Triclinic, P1Z = 2
a = 7.785 (6) ÅMo Kα radiation
b = 8.126 (2) ŵ = 1.77 mm1
c = 11.394 (2) ÅT = 293 K
α = 92.36 (2)°0.1 × 0.1 × 0.1 mm
β = 99.67 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2733 reflections with I > 2σ(I)
3798 measured reflectionsRint = 0.014
3068 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters not refined
S = 1.07Δρmax = 0.53 e Å3
3068 reflectionsΔρmin = 0.64 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.15424 (5)0.41605 (4)0.23967 (3)0.03654 (17)
O10.3369 (3)0.3103 (3)0.3456 (2)0.0430 (5)
O20.3189 (6)0.3208 (6)0.0920 (4)0.0971 (13)
O30.1851 (4)0.4038 (4)0.4754 (2)0.0547 (6)
O40.2364 (4)0.4269 (3)0.0859 (2)0.0558 (7)
O50.4232 (7)0.2470 (7)0.5506 (5)0.1252 (18)
O60.2253 (4)0.1542 (3)0.0596 (2)0.0574 (7)
N10.3052 (4)0.3279 (4)0.4537 (3)0.0510 (7)
N20.2542 (4)0.2947 (4)0.0259 (3)0.0503 (7)
N30.0884 (3)0.2952 (3)0.2279 (2)0.0360 (5)
N40.3596 (4)0.2487 (4)0.2566 (3)0.0477 (7)
H4N0.45280.25580.28680.057*
N50.1481 (4)0.6622 (3)0.2647 (2)0.0385 (6)
N60.1656 (4)0.9234 (3)0.2214 (3)0.0509 (7)
H6N0.18621.01140.18420.061*
C10.1781 (5)0.1749 (4)0.1439 (3)0.0440 (7)
H10.13080.12260.08470.053*
C20.3456 (5)0.1454 (5)0.1615 (4)0.0535 (9)
H20.43400.07000.11780.064*
C30.2038 (4)0.3359 (4)0.2941 (3)0.0417 (7)
H30.17910.41470.35810.050*
C40.0906 (5)0.7536 (4)0.3524 (3)0.0429 (7)
H40.05090.71100.41890.051*
C50.1012 (5)0.9154 (4)0.3262 (4)0.0507 (8)
H50.07081.00310.37040.061*
C60.1905 (5)0.7699 (4)0.1878 (3)0.0445 (7)
H60.23250.74220.11870.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0395 (2)0.0308 (2)0.0420 (2)0.00520 (14)0.01374 (15)0.00335 (14)
O10.0397 (12)0.0507 (13)0.0420 (12)0.0110 (10)0.0144 (10)0.0003 (10)
O20.124 (3)0.106 (3)0.069 (2)0.009 (3)0.041 (2)0.013 (2)
O30.0595 (16)0.0674 (17)0.0446 (13)0.0221 (13)0.0207 (12)0.0009 (12)
O40.0794 (19)0.0442 (13)0.0528 (15)0.0118 (13)0.0342 (14)0.0027 (11)
O50.130 (4)0.144 (5)0.095 (3)0.039 (3)0.018 (3)0.028 (3)
O60.082 (2)0.0396 (13)0.0546 (15)0.0006 (13)0.0282 (14)0.0086 (11)
N10.0515 (17)0.0519 (17)0.0489 (16)0.0010 (14)0.0108 (13)0.0008 (13)
N20.0495 (17)0.0553 (18)0.0472 (16)0.0039 (14)0.0126 (13)0.0046 (13)
N30.0364 (13)0.0365 (13)0.0361 (13)0.0051 (10)0.0094 (10)0.0005 (10)
N40.0363 (14)0.0550 (17)0.0559 (17)0.0096 (12)0.0167 (13)0.0031 (14)
N50.0459 (14)0.0319 (12)0.0396 (13)0.0048 (11)0.0118 (11)0.0051 (10)
N60.063 (2)0.0332 (14)0.0614 (19)0.0060 (13)0.0214 (16)0.0147 (13)
C10.0432 (17)0.0485 (18)0.0397 (16)0.0090 (14)0.0062 (13)0.0084 (14)
C20.0428 (19)0.052 (2)0.061 (2)0.0028 (15)0.0023 (16)0.0091 (17)
C30.0446 (17)0.0444 (17)0.0385 (16)0.0070 (14)0.0141 (13)0.0018 (13)
C40.0528 (19)0.0368 (16)0.0407 (16)0.0038 (14)0.0138 (14)0.0030 (13)
C50.063 (2)0.0346 (16)0.058 (2)0.0075 (15)0.0181 (18)0.0001 (15)
C60.0516 (19)0.0407 (17)0.0453 (17)0.0067 (14)0.0178 (15)0.0090 (13)
Geometric parameters (Å, º) top
Zn1—O41.966 (3)N4—H4N0.8600
Zn1—O11.999 (3)N5—C61.320 (4)
Zn1—N32.011 (3)N5—C41.383 (4)
Zn1—N52.015 (3)N6—C61.334 (5)
O1—N11.301 (4)N6—C51.372 (5)
O2—N21.526 (5)N6—H6N0.8600
O3—N11.228 (4)C1—C21.350 (5)
O4—N21.282 (4)C1—H10.9300
O5—N11.532 (5)C2—H20.9300
O6—N21.229 (4)C3—H30.9300
N3—C31.327 (4)C4—C51.356 (5)
N3—C11.381 (4)C4—H40.9300
N4—C31.330 (5)C5—H50.9300
N4—C21.369 (5)C6—H60.9300
O4—Zn1—O1104.93 (12)C4—N5—Zn1131.1 (2)
O4—Zn1—N3113.61 (12)C6—N6—C5107.5 (3)
O1—Zn1—N3113.00 (11)C6—N6—H6N126.2
O4—Zn1—N595.75 (11)C5—N6—H6N126.2
O1—Zn1—N5118.25 (12)C2—C1—N3109.0 (3)
N3—Zn1—N5110.03 (13)C2—C1—H1125.5
N1—O1—Zn1107.0 (2)N3—C1—H1125.5
N2—O4—Zn1121.2 (2)C1—C2—N4106.4 (3)
O3—N1—O1121.1 (3)C1—C2—H2126.8
O3—N1—O5122.4 (4)N4—C2—H2126.8
O1—N1—O5116.5 (3)N3—C3—N4110.7 (3)
O6—N2—O4123.7 (3)N3—C3—H3124.6
O6—N2—O2120.5 (3)N4—C3—H3124.6
O4—N2—O2115.8 (3)C5—C4—N5109.2 (3)
C3—N3—C1105.9 (3)C5—C4—H4125.4
C3—N3—Zn1124.1 (2)N5—C4—H4125.4
C1—N3—Zn1129.5 (2)C4—C5—N6106.2 (3)
C3—N4—C2108.0 (3)C4—C5—H5126.9
C3—N4—H4N126.0N6—C5—H5126.9
C2—N4—H4N126.0N5—C6—N6111.5 (3)
C6—N5—C4105.5 (3)N5—C6—H6124.2
C6—N5—Zn1123.2 (2)N6—C6—H6124.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O1i0.861.962.808 (4)170
N6—H6N···O6ii0.861.912.741 (4)161
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(NO3)2(C3H4N2)2]
Mr325.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.785 (6), 8.126 (2), 11.394 (2)
α, β, γ (°)92.36 (2), 99.67 (4), 96.32 (7)
V3)704.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3798, 3068, 2733
Rint0.014
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.07
No. of reflections3068
No. of parameters173
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.53, 0.64

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Zn1—O41.966 (3)Zn1—N32.011 (3)
Zn1—O11.999 (3)Zn1—N52.015 (3)
O4—Zn1—O1104.93 (12)O4—Zn1—N595.75 (11)
O4—Zn1—N3113.61 (12)O1—Zn1—N5118.25 (12)
O1—Zn1—N3113.00 (11)N3—Zn1—N5110.03 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O1i0.861.962.808 (4)170
N6—H6N···O6ii0.861.912.741 (4)161
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6301PS48)

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, K.-H., Li, J.-M. & Jiang, Y.-M. (2007). Acta Cryst. E63, m2992–m2993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Noll, B. C. & Scheidt, W. R. (2007). Acta Cryst. E63, m1048–m1049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaw, J. L., Gwaltney, K. P. & Keer, N. (2009). Inorg. Chim. Acta, 362, 2396-2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Q.-A., Dong, G.-Y., Yu, Y.-M. & Wang, Y.-G. (2009). Acta Cryst. E65, m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds