metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-meth­oxy­phenolato-κ2O,O′)copper(II)

aSchool of Environmental Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and cSchool of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

(Received 2 July 2009; accepted 4 September 2009; online 12 September 2009)

In the title compound, [Cu(C7H7O2)2], the asymmetric unit contains one and a half molecules with the central Cu(II) atoms situated on a general position and on a centre of inversion, respectively. Both Cu(II) atoms show a similar slightly distorted square-planar coordination, resulting from four O atoms of two 2-methoxyphenolate anions.

Related literature

For 2-meth­oxy-phenol compounds, see: Campello et al. (1997[Campello, M. P. C., Calhorda, M. J., Domingos, A., Galvao, A., Leal, J. P., Pires de Matos, A. & Santos, I. (1997). J. Organomet. Chem. 538, 223-239.]); Floriani et al. (1988[Floriani, C., Mazzanti, M., Chiesi-Villa, A. & Guastini, C. (1988). Angew. Chem. Int. Ed. Engl. 27, 576-578.]); Minhas et al. (1993[Minhas, R. K., Edema, J. J. H., Gambarotta, S. & Meetsma, A. (1993). J. Am. Chem. Soc. 115, 6710-6717.]); Kuo et al. (1999[Kuo, C. N., Huang, T. Y., Shao, M. Y. & Gau, H. M. (1999). Inorg. Chim. Acta, 293, 12-19.]); Schumann et al. (1996[Schumann, H., Frick, M., Heymer, B. & Girgsdies, F. (1996). J. Organomet. Chem. 512, 117-126.]); Sobota et al. (2001[Sobota, P., Przybylak, K., Utko, J., Jerzykiewicz, L. B., Pombeiro, A. J. L., Guedes da Silva, M. F. C. & Szczegot, K. (2001). Chem. Eur. J. 7, 951-958.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H7O2)2]

  • Mr = 333.82

  • Triclinic, [P \overline 1]

  • a = 9.5190 (19) Å

  • b = 11.540 (2) Å

  • c = 12.488 (3) Å

  • α = 102.83 (3)°

  • β = 103.93 (3)°

  • γ = 111.20 (3)°

  • V = 1166.7 (6) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.23 × 0.12 × 0.08 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.656, Tmax = 0.857

  • 6930 measured reflections

  • 4164 independent reflections

  • 3466 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.129

  • S = 0.93

  • 4164 reflections

  • 289 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Methoxy-phenol ligand can act as either mondentate ligand (Campello, et al., 1997), or didentate ligand (Sobota, et al., 2001), or mu2-o ligand or mu3:eta1:eta2-O ligand (Schumann, et al. 1996) or mu4:eta1:eta3-O ligand (Floriani, et al. 1988). However, copper compound with 2-Methoxy-phenol have not been reported till today (http://www.ccdc.cam.ac.uk/). The title compound, (I), is a new CuII complex prepared by reaction of 2-Methoxy-phenol and Copper(II) nitrate using solvothermal technique.

There are one CuÎI^ atom and two L- ligand in the asymetric unit. The CuII atom has a slightly distorted square-planar environment, formed by four O atoms from two different L- ligands. The L- ligand binds to copper in a didentate mode, through two O atoms. In the title complex, the two copper lied in the different position that the Cu2 is at the center of symmetry (010) plane and the Cu1 is at a general position (Fig. 2). The complex further constructed a 3-D network through very weak C–H···O hydrogen bond (C21–H21···O1i, 3.426 (1) Å, symmetry code: (i) 1 - y,2 - y,1 - z) and C–H···p hydrogen bond (C16···Pii, 3.652 (1) Å, symmetry code: (ii) 1 + x, y, z).

Related literature top

For 2-methoxy-phenol compounds, see: Campello et al. (1997); Floriani et al. (1988); Minhas et al. (1993); Kuo et al. (1999); Schumann et al. (1996); Sobota et al. (2001).

Experimental top

A solution of (0.124 g, 1 mmol) 2-Methoxy-phenol and (0.056 g, 1 mmol) potassium hydroxide in 8 ml absolute methanol was added ((0.125 g, 0.5 mmol) Copper nitrate tetrahydrate. The solution was placed in a 15-ml Tetlon-lined stainless steel parr bomb. The bomd was heated at 363 k for 96 h. The cooled mixture yielded blue block-shaped crystal of (1) in about 71% yield. The crystals were washed with methanol and then dried in air.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with distances 0.96 Å(CH3) or 0.93 Å(aromatic ring). and with Uiso(H) = 1.2 Ueq(aromatic ring) or Uiso(H) = 1.5 Ueq((CH3).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Symmetry codes: (A) -x + 1, -y + 2, -z + 1.
[Figure 2] Fig. 2. Packing diagram of title complex,hydrogen atoms were omitted.
Bis(2-methoxyphenolato-κ2O,O')copper(II) top
Crystal data top
[Cu(C7H7O2)2]Z = 3
Mr = 333.82F(000) = 513
Triclinic, P1Dx = 1.425 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5190 (19) ÅCell parameters from 4216 reflections
b = 11.540 (2) Åθ = 3.1–25.3°
c = 12.488 (3) ŵ = 1.42 mm1
α = 102.83 (3)°T = 293 K
β = 103.93 (3)°Block, blue
γ = 111.20 (3)°0.23 × 0.12 × 0.08 mm
V = 1166.7 (6) Å3
Data collection top
Bruker P4
diffractometer
4164 independent reflections
Radiation source: fine-focus sealed tube3466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.656, Tmax = 0.857k = 1313
6930 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0653P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
4164 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.70 e Å3
4 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(C7H7O2)2]γ = 111.20 (3)°
Mr = 333.82V = 1166.7 (6) Å3
Triclinic, P1Z = 3
a = 9.5190 (19) ÅMo Kα radiation
b = 11.540 (2) ŵ = 1.42 mm1
c = 12.488 (3) ÅT = 293 K
α = 102.83 (3)°0.23 × 0.12 × 0.08 mm
β = 103.93 (3)°
Data collection top
Bruker P4
diffractometer
4164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3466 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.857Rint = 0.037
6930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.93Δρmax = 0.70 e Å3
4164 reflectionsΔρmin = 0.63 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.52201 (5)0.70662 (4)0.76824 (4)0.03605 (16)
Cu20.50001.00000.50000.03477 (19)
C10.1962 (4)0.5274 (4)0.7391 (3)0.0393 (9)
C20.0931 (5)0.4117 (4)0.7551 (4)0.0544 (11)
H20.13880.36650.79340.065*
C30.0719 (6)0.3655 (5)0.7154 (5)0.0700 (14)
H30.13550.29010.72730.084*
C40.1437 (6)0.4304 (6)0.6579 (5)0.0746 (15)
H40.25520.39790.62980.090*
C50.0486 (5)0.5435 (5)0.6426 (4)0.0628 (13)
H50.09820.58670.60460.075*
C60.1233 (4)0.5970 (4)0.6827 (3)0.0418 (9)
C70.2162 (4)0.7193 (4)0.6650 (3)0.0419 (9)
C80.1304 (5)0.7895 (5)0.6067 (4)0.0573 (12)
H8A0.20860.86940.60530.086*
H8B0.06720.81070.65020.086*
H8C0.06130.73280.52780.086*
C90.8449 (4)0.8867 (4)0.7933 (4)0.0414 (9)
C100.9435 (5)1.0056 (4)0.7786 (4)0.0559 (11)
H100.89511.04500.73420.067*
C111.1084 (6)1.0620 (5)0.8293 (5)0.0699 (14)
H111.16991.13860.81800.084*
C121.1844 (5)1.0075 (5)0.8966 (5)0.0727 (15)
H121.29601.04770.93150.087*
C131.0938 (5)0.8930 (5)0.9118 (4)0.0605 (12)
H131.14640.85630.95650.073*
C140.9226 (4)0.8284 (4)0.8617 (3)0.0410 (9)
C150.8344 (4)0.7091 (4)0.8844 (3)0.0425 (9)
C160.9244 (6)0.6458 (5)0.9492 (5)0.0648 (13)
H16A0.84850.56570.95200.097*
H16B0.99020.70581.02770.097*
H16C0.99150.62590.90890.097*
C170.4664 (4)0.8676 (4)0.2612 (3)0.0362 (8)
C180.4051 (5)0.8508 (4)0.1408 (3)0.0453 (9)
H180.36340.90740.11970.054*
C190.4051 (5)0.7535 (4)0.0537 (4)0.0472 (10)
H190.36190.74370.02470.057*
C200.4707 (5)0.6694 (4)0.0840 (4)0.0465 (10)
H200.47240.60420.02590.056*
C210.5329 (4)0.6839 (4)0.2007 (4)0.0423 (9)
H210.57760.62830.21970.051*
C220.5311 (4)0.7810 (3)0.2934 (3)0.0336 (8)
C230.5920 (4)0.7872 (4)0.4156 (3)0.0378 (8)
C240.6642 (7)0.6950 (5)0.4440 (4)0.0690 (14)
H24A0.69450.70980.52670.104*
H24B0.75760.71210.42180.104*
H24C0.58610.60490.40130.104*
O10.3522 (3)0.5619 (2)0.7790 (2)0.0421 (6)
O20.3737 (4)0.7706 (3)0.6987 (3)0.0619 (8)
O30.6876 (3)0.8377 (3)0.7402 (3)0.0506 (7)
O40.6767 (4)0.6530 (3)0.8491 (3)0.0633 (9)
O50.4601 (4)0.9650 (3)0.3363 (2)0.0488 (7)
O60.5830 (4)0.8684 (3)0.5029 (3)0.0571 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0312 (3)0.0370 (3)0.0406 (3)0.0157 (2)0.0112 (2)0.0147 (2)
Cu20.0444 (4)0.0352 (3)0.0314 (4)0.0241 (3)0.0137 (3)0.0117 (3)
C10.038 (2)0.039 (2)0.039 (2)0.0164 (16)0.0172 (17)0.0062 (17)
C20.051 (2)0.046 (2)0.066 (3)0.017 (2)0.027 (2)0.020 (2)
C30.049 (3)0.062 (3)0.087 (4)0.007 (2)0.034 (3)0.021 (3)
C40.034 (2)0.080 (4)0.093 (4)0.011 (2)0.020 (2)0.026 (3)
C50.038 (2)0.078 (3)0.064 (3)0.023 (2)0.012 (2)0.021 (3)
C60.0350 (19)0.048 (2)0.039 (2)0.0179 (17)0.0128 (17)0.0089 (18)
C70.0368 (18)0.053 (2)0.037 (2)0.0237 (18)0.0122 (16)0.0116 (19)
C80.052 (2)0.070 (3)0.061 (3)0.037 (2)0.016 (2)0.027 (3)
C90.036 (2)0.043 (2)0.043 (2)0.0142 (17)0.0169 (17)0.0146 (19)
C100.052 (3)0.050 (3)0.066 (3)0.017 (2)0.023 (2)0.027 (2)
C110.056 (3)0.056 (3)0.079 (4)0.003 (2)0.029 (3)0.022 (3)
C120.035 (2)0.073 (3)0.084 (4)0.003 (2)0.016 (2)0.020 (3)
C130.037 (2)0.078 (3)0.057 (3)0.021 (2)0.008 (2)0.023 (3)
C140.0334 (19)0.047 (2)0.038 (2)0.0156 (17)0.0107 (16)0.0122 (18)
C150.037 (2)0.055 (2)0.037 (2)0.0239 (18)0.0115 (17)0.0163 (19)
C160.057 (3)0.081 (3)0.066 (3)0.038 (3)0.014 (2)0.040 (3)
C170.0349 (18)0.0349 (19)0.035 (2)0.0156 (16)0.0097 (16)0.0073 (17)
C180.048 (2)0.050 (2)0.038 (2)0.0260 (19)0.0090 (18)0.0129 (19)
C190.052 (2)0.049 (2)0.031 (2)0.0178 (19)0.0122 (18)0.0062 (19)
C200.054 (2)0.039 (2)0.041 (2)0.0181 (18)0.0202 (19)0.0031 (18)
C210.043 (2)0.034 (2)0.052 (3)0.0194 (17)0.0206 (19)0.0093 (18)
C220.0306 (17)0.0305 (18)0.039 (2)0.0132 (14)0.0133 (15)0.0089 (16)
C230.0389 (19)0.0342 (19)0.046 (2)0.0214 (16)0.0170 (17)0.0123 (17)
C240.100 (4)0.081 (3)0.055 (3)0.071 (3)0.024 (3)0.023 (3)
O10.0376 (14)0.0390 (14)0.0541 (17)0.0187 (11)0.0173 (12)0.0189 (13)
O20.0529 (17)0.065 (2)0.074 (2)0.0300 (15)0.0214 (16)0.0286 (18)
O30.0351 (14)0.0563 (17)0.065 (2)0.0183 (13)0.0134 (13)0.0364 (16)
O40.0519 (18)0.065 (2)0.079 (2)0.0271 (16)0.0203 (16)0.0362 (18)
O50.079 (2)0.0494 (16)0.0350 (15)0.0463 (15)0.0201 (14)0.0154 (13)
O60.0668 (19)0.0625 (19)0.0566 (19)0.0401 (16)0.0235 (16)0.0246 (16)
Geometric parameters (Å, º) top
Cu1—O11.916 (3)C11—C121.378 (7)
Cu1—O31.916 (3)C11—H110.9300
Cu1—O21.934 (3)C12—C131.375 (7)
Cu1—O41.947 (3)C12—H120.9300
Cu2—O5i1.906 (3)C13—C141.423 (5)
Cu2—O51.906 (3)C13—H130.9300
Cu2—O6i1.952 (3)C14—C151.460 (6)
Cu2—O61.952 (3)C15—O41.311 (5)
C1—O11.319 (4)C15—C161.518 (5)
C1—C61.430 (5)C16—H16A0.9600
C1—C21.432 (6)C16—H16B0.9600
C2—C31.379 (6)C16—H16C0.9600
C2—H20.9300C17—O51.325 (4)
C3—C41.384 (7)C17—C181.417 (5)
C3—H30.9300C17—C221.429 (5)
C4—C51.378 (7)C18—C191.380 (6)
C4—H40.9300C18—H180.9300
C5—C61.431 (5)C19—C201.401 (6)
C5—H50.9300C19—H190.9300
C6—C71.467 (6)C20—C211.380 (6)
C7—O21.311 (5)C20—H200.9300
C7—C81.519 (5)C21—C221.430 (5)
C8—H8A0.9600C21—H210.9300
C8—H8B0.9600C22—C231.471 (5)
C8—H8C0.9600C23—O61.313 (5)
C9—O31.321 (4)C23—C241.520 (5)
C9—C141.428 (5)C24—H24A0.9600
C9—C101.436 (6)C24—H24B0.9600
C10—C111.374 (7)C24—H24C0.9600
C10—H100.9300
O1—Cu1—O3173.38 (12)C13—C12—H12120.3
O1—Cu1—O291.92 (12)C12—C13—C14122.6 (4)
O3—Cu1—O288.35 (12)C12—C13—H13118.7
O1—Cu1—O489.17 (12)C14—C13—H13118.7
O3—Cu1—O491.05 (12)C13—C14—C9117.6 (4)
O2—Cu1—O4175.72 (15)C13—C14—C15119.4 (4)
O5i—Cu2—O5180.000 (1)C9—C14—C15123.0 (3)
O5i—Cu2—O6i92.29 (12)O4—C15—C14121.6 (3)
O5—Cu2—O6i87.71 (12)O4—C15—C16118.1 (4)
O5i—Cu2—O687.71 (12)C14—C15—C16120.3 (3)
O5—Cu2—O692.29 (12)C15—C16—H16A109.5
O6i—Cu2—O6180.000 (1)C15—C16—H16B109.5
O1—C1—C6125.1 (3)H16A—C16—H16B109.5
O1—C1—C2116.9 (4)C15—C16—H16C109.5
C6—C1—C2118.0 (3)H16A—C16—H16C109.5
C3—C2—C1121.9 (4)H16B—C16—H16C109.5
C3—C2—H2119.1O5—C17—C18116.4 (3)
C1—C2—H2119.1O5—C17—C22124.8 (3)
C2—C3—C4120.5 (5)C18—C17—C22118.8 (3)
C2—C3—H3119.8C19—C18—C17122.2 (4)
C4—C3—H3119.8C19—C18—H18118.9
C3—C4—C5119.5 (4)C17—C18—H18118.9
C3—C4—H4120.3C18—C19—C20119.6 (4)
C5—C4—H4120.3C18—C19—H19120.2
C4—C5—C6122.7 (5)C20—C19—H19120.2
C4—C5—H5118.7C21—C20—C19119.7 (4)
C6—C5—H5118.7C21—C20—H20120.2
C1—C6—C5117.5 (4)C19—C20—H20120.2
C1—C6—C7123.1 (3)C20—C21—C22122.5 (4)
C5—C6—C7119.4 (4)C20—C21—H21118.7
O2—C7—C6121.4 (3)C22—C21—H21118.7
O2—C7—C8118.5 (4)C17—C22—C21117.2 (3)
C6—C7—C8120.1 (3)C17—C22—C23122.9 (3)
C7—C8—H8A109.5C21—C22—C23119.9 (3)
C7—C8—H8B109.5O6—C23—C22122.3 (3)
H8A—C8—H8B109.5O6—C23—C24117.6 (4)
C7—C8—H8C109.5C22—C23—C24120.1 (3)
H8A—C8—H8C109.5C23—C24—H24A109.5
H8B—C8—H8C109.5C23—C24—H24B109.5
O3—C9—C14124.7 (3)H24A—C24—H24B109.5
O3—C9—C10117.0 (4)C23—C24—H24C109.5
C14—C9—C10118.3 (4)H24A—C24—H24C109.5
C11—C10—C9120.8 (4)H24B—C24—H24C109.5
C11—C10—H10119.6C1—O1—Cu1127.9 (2)
C9—C10—H10119.6C7—O2—Cu1130.4 (3)
C10—C11—C12121.3 (4)C9—O3—Cu1127.4 (2)
C10—C11—H11119.3C15—O4—Cu1130.0 (3)
C12—C11—H11119.3C17—O5—Cu2127.9 (2)
C11—C12—C13119.4 (4)C23—O6—Cu2129.0 (3)
C11—C12—H12120.3
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H7O2)2]
Mr333.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5190 (19), 11.540 (2), 12.488 (3)
α, β, γ (°)102.83 (3), 103.93 (3), 111.20 (3)
V3)1166.7 (6)
Z3
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.23 × 0.12 × 0.08
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
6930, 4164, 3466
Rint0.037
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 0.93
No. of reflections4164
No. of parameters289
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.63

Computer programs: XSCANS (Bruker, 1997), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

We acknowledge financial support by Guangxi Key Laboratory for Advanced Materials and New Preparation Technology (No. 0842003–25) and the Young Science Foundation of Guangxi Province (No. 0832085).

References

First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampello, M. P. C., Calhorda, M. J., Domingos, A., Galvao, A., Leal, J. P., Pires de Matos, A. & Santos, I. (1997). J. Organomet. Chem. 538, 223–239.  CSD CrossRef CAS Web of Science Google Scholar
First citationFloriani, C., Mazzanti, M., Chiesi-Villa, A. & Guastini, C. (1988). Angew. Chem. Int. Ed. Engl. 27, 576–578.  CrossRef Web of Science Google Scholar
First citationKuo, C. N., Huang, T. Y., Shao, M. Y. & Gau, H. M. (1999). Inorg. Chim. Acta, 293, 12–19.  Web of Science CSD CrossRef CAS Google Scholar
First citationMinhas, R. K., Edema, J. J. H., Gambarotta, S. & Meetsma, A. (1993). J. Am. Chem. Soc. 115, 6710–6717.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchumann, H., Frick, M., Heymer, B. & Girgsdies, F. (1996). J. Organomet. Chem. 512, 117–126.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobota, P., Przybylak, K., Utko, J., Jerzykiewicz, L. B., Pombeiro, A. J. L., Guedes da Silva, M. F. C. & Szczegot, K. (2001). Chem. Eur. J. 7, 951–958.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds