organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-2-(4-Methyl­phen­yl)-3-(2-naphth­yl)prop-2-ene­nitrile

aChemistry Department, Faculty of Science, King Abdul-Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 August 2009; accepted 26 August 2009; online 9 September 2009)

In the title compound, C20H15N, the dihedral angle between the naphthalene and benzene rings is 60.30 (16)°. The crystal packing features very weak inter­molecular C—H⋯π inter­actions.

Related literature

For background on the commercial importance and applications of styryl dyes, see: Haidekker et al. (2001[Haidekker, M. A., Ling, T., Anglo, M., Stevens, H. Y., Frangos, J. A. & Theodorakis, E. A. (2001). Chem. Biol. 8, 123-131.]); Hamer (1964[Hamer, F. M. (1964). The Cyanine Dyes and Related Compounds, edited by A. Weissberger. New York, London: Wiley-Interscience.]); Li et al. (1998[Li, Q., Lin, G. L., Peng, B. X. & Li, Z. X. (1998). Dyes Pigments, 38, 211-218.]); Makoto et al. (2000a[Makoto, M., Hisato, T., Hiromitsu, T., Osamu, W., Tomohiko, M. & Seiji, T. (2000a). Jpn Kokai Tokkyo Koho Jpn, 260:566.],b[Makoto, M., Hisato, T., Hiromitsu, T., Osamu, W., Tomohiko, M. & Seiji, T. (2000b). Chem. Abstr. 133, 244894.]); Mousnier et al. (2004[Mousnier, A., Leh, H., Mouscadet, J. F. & Dargemont, C. (2004). Mol. Pharmacol. 66, 783-788.]); Park et al. (2001[Park, K. H., Lee, C. J., Song, D. H., Kim, J., Huh, Y. J. & Mm, K. S. (2001). Mol. Cryst. Liq. Cryst. 370, 165-168.]); Pommeret et al. (1995[Pommeret, S., Gustavsson, T., Naskrecki, R., Baldacchino, G. & Mialocq, J. C. (1995). J. Mol. Liq. 64, 101-112.]); Spalletti (2004[Spalletti, A. (2004). Photochem. Photobiol. Sci. 3, 695-699.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N

  • Mr = 269.33

  • Orthorhombic, P c a 21

  • a = 12.3194 (11) Å

  • b = 16.4796 (16) Å

  • c = 7.2596 (7) Å

  • V = 1473.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 16248 measured reflections

  • 3659 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.174

  • S = 0.95

  • 3659 reflections

  • 192 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.93 2.98 3.682 (4) 134
C7—H7⋯Cg2ii 0.93 2.93 3.695 (4) 140
C9—H9⋯Cg1ii 0.93 2.78 3.473 (4) 133
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C3/C8–C10 and C3–C8 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Styryl dyes are of commercial importance, not only because of their applications as pigment, but also due to their high technology applications, such as sensitizers formerly (Hamer, 1964), electroluminescence (Makoto et al., 2000a,b), photochromism (Spalletti, 2004), photography (Li et al., 1998), fluorescent probes (Haidekker et al., 2001), optical recording materials (Park et al., 2001), laser dyes (Pommeret et al., 1995) and in the field of medication (Mousnier et al., 2004).

The structure of the title compound (I) is shown in Fig. 1. All bond lengths (Allen et al., 1987) and bond angles in (I) may be regarded as normal. The naphthalene ring in (I) is almost planar, with the maximum deviations of -0.008 (3), 0.015 (3), -0.009 (4) and -0.008 (4) Å for atoms C1, C2, C5 and C8, respectively. The mean plane of the naphthalene ring makes a dihedral angle of 60.30 (16)° with the benzene ring of the 2-(4-methylphenyl) group.

The crystal packing is stabilized by weak intermolecular C—H···π interactions between the centroids of the two six-membered rings (C1–C3/C8–C10) and (C3–C8) of naphthalene of the adjacent molecules (Table 1). Fig. 2 shows the packing arrangement in the unit cell, as viewed down the a axis.

Related literature top

For background on the commercial importance and applications of styryl dyes, see: Haidekker et al. (2001); Hamer (1964); Li et al. (1998); Makoto et al. (2000a,b); Mousnier et al. (2004); Park et al. (2001); Pommeret et al. (1995); Spalletti (2004). For reference structural data, see: Allen et al. (1987). Cg1 and Cg2 are the centroids of the C1–C3/C8–C10 and C3–C8 rings, respectively.

Experimental top

A mixture of 4-methyl benzylcyanide (1.00 g, 0.0076 mol) and 2-napthaldehyde (1.18 g, 0.0076 mol) in anhydrous ethanol (15 ml), in the presence of pyridine was refluxed at 353 K for 3 h with continuous stirring. Progress of reaction was monitored by TLC. After completion of the reaction solution was cooled. The heavy precipitate thus obtained was collected by filtration and purified by recrystallization from methanol and chloroform [m.p.: 412 K, yield: 57%] to yield pale yellow prisms of (I).

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 and 0.96 Å, and refined using a riding model, with Uiso(H)= 1.5Ueq(C) for methyl and 1.2Ueq(C) for others; the methyl were allowed to rotate but not to tip. The absolute structure parameter was indeterminate.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I): displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I) viewed down the a axis. H atoms have been omitted for clarity.
(2Z)-2-(4-Methylphenyl)-3-(2-naphthyl)prop-2-enenitrile top
Crystal data top
C20H15NF(000) = 568
Mr = 269.33Dx = 1.214 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1202 reflections
a = 12.3194 (11) Åθ = 3.3–19.2°
b = 16.4796 (16) ŵ = 0.07 mm1
c = 7.2596 (7) ÅT = 296 K
V = 1473.8 (2) Å3Prism, pale yellow
Z = 40.37 × 0.28 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1549 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.092
Graphite monochromatorθmax = 28.3°, θmin = 1.2°
ϕ and ω scansh = 1616
16248 measured reflectionsk = 2121
3659 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0732P)2]
where P = (Fo2 + 2Fc2)/3
3659 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C20H15NV = 1473.8 (2) Å3
Mr = 269.33Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.3194 (11) ŵ = 0.07 mm1
b = 16.4796 (16) ÅT = 296 K
c = 7.2596 (7) Å0.37 × 0.28 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1549 reflections with I > 2σ(I)
16248 measured reflectionsRint = 0.092
3659 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.174H-atom parameters constrained
S = 0.95Δρmax = 0.21 e Å3
3659 reflectionsΔρmin = 0.21 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > σ(F^2^) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2102 (3)0.2374 (2)0.2270 (6)0.0755 (18)
C10.4123 (2)0.4123 (2)0.3160 (5)0.0387 (11)
C20.4702 (2)0.4813 (2)0.2783 (5)0.0384 (11)
C30.4291 (3)0.5598 (2)0.3140 (5)0.0371 (11)
C40.4872 (3)0.6316 (2)0.2717 (5)0.0459 (14)
C50.4449 (3)0.7059 (2)0.3090 (5)0.0510 (14)
C60.3431 (3)0.7129 (2)0.3916 (6)0.0537 (14)
C70.2845 (3)0.6454 (2)0.4337 (5)0.0477 (16)
C80.3250 (3)0.5669 (2)0.3945 (5)0.0374 (11)
C90.2669 (3)0.4948 (2)0.4371 (5)0.0448 (14)
C100.3079 (3)0.4205 (2)0.3993 (6)0.0426 (11)
C110.4613 (2)0.3337 (2)0.2763 (5)0.0424 (11)
C120.4168 (2)0.2602 (2)0.2486 (5)0.0420 (11)
C130.4813 (3)0.1865 (2)0.2136 (5)0.0422 (14)
C140.4457 (3)0.1283 (2)0.0903 (6)0.0543 (14)
C150.5086 (3)0.0608 (2)0.0502 (7)0.0633 (17)
C160.6068 (3)0.0487 (2)0.1335 (6)0.0550 (16)
C170.6417 (3)0.1063 (2)0.2582 (7)0.0620 (18)
C180.5807 (3)0.1741 (2)0.2980 (6)0.0543 (14)
C190.6730 (4)0.0271 (2)0.0951 (8)0.0840 (19)
C200.3006 (3)0.2492 (2)0.2411 (7)0.0503 (14)
H20.539100.476300.227300.0460*
H40.555400.627700.217500.0550*
H50.484100.752300.279400.0610*
H60.315100.764000.418000.0640*
H70.216800.650900.489100.0570*
H90.199100.498700.492500.0540*
H100.267800.374400.427800.0510*
H110.536700.334600.268700.0510*
H140.378600.134500.033500.0650*
H150.483500.023100.035000.0750*
H170.708100.099100.316900.0750*
H180.606500.211900.382400.0650*
H19A0.645000.071400.166700.1260*
H19B0.747500.017600.127800.1260*
H19C0.668500.040300.033500.1260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0474 (19)0.072 (3)0.107 (4)0.0020 (18)0.000 (2)0.009 (2)
C10.0332 (17)0.047 (2)0.036 (2)0.0056 (17)0.0002 (16)0.0009 (19)
C20.0332 (17)0.048 (2)0.034 (2)0.0018 (16)0.0001 (16)0.0039 (18)
C30.0353 (17)0.048 (2)0.028 (2)0.0005 (16)0.0054 (16)0.0042 (17)
C40.0437 (19)0.047 (2)0.047 (3)0.0043 (18)0.001 (2)0.000 (2)
C50.058 (2)0.044 (2)0.051 (3)0.005 (2)0.006 (2)0.004 (2)
C60.056 (2)0.045 (2)0.060 (3)0.006 (2)0.005 (2)0.011 (2)
C70.042 (2)0.054 (3)0.047 (3)0.0066 (19)0.0003 (18)0.007 (2)
C80.0392 (19)0.044 (2)0.029 (2)0.0072 (17)0.0026 (16)0.0033 (18)
C90.0374 (19)0.058 (2)0.039 (3)0.0041 (19)0.0064 (18)0.001 (2)
C100.0418 (19)0.046 (2)0.040 (2)0.0020 (17)0.0063 (17)0.0063 (19)
C110.0363 (17)0.046 (2)0.045 (2)0.0053 (17)0.0031 (17)0.0007 (19)
C120.0411 (18)0.041 (2)0.044 (2)0.0011 (17)0.0014 (19)0.0056 (19)
C130.0407 (19)0.036 (2)0.050 (3)0.0034 (16)0.0008 (18)0.0054 (18)
C140.049 (2)0.047 (2)0.067 (3)0.002 (2)0.007 (2)0.006 (2)
C150.076 (3)0.047 (3)0.067 (3)0.002 (2)0.007 (3)0.005 (2)
C160.063 (3)0.041 (2)0.061 (3)0.007 (2)0.014 (2)0.008 (2)
C170.051 (2)0.053 (3)0.082 (4)0.005 (2)0.010 (2)0.000 (3)
C180.054 (2)0.044 (2)0.065 (3)0.0016 (19)0.010 (2)0.008 (2)
C190.102 (3)0.058 (3)0.092 (4)0.024 (3)0.017 (3)0.006 (3)
C200.047 (2)0.051 (2)0.053 (3)0.001 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
N1—C201.135 (5)C15—C161.367 (6)
C1—C21.370 (4)C16—C171.380 (6)
C1—C101.428 (5)C16—C191.518 (5)
C1—C111.458 (5)C17—C181.377 (5)
C2—C31.413 (5)C2—H20.9300
C3—C41.417 (5)C4—H40.9300
C3—C81.414 (5)C5—H50.9300
C4—C51.358 (5)C6—H60.9300
C5—C61.395 (5)C7—H70.9300
C6—C71.361 (5)C9—H90.9300
C7—C81.415 (5)C10—H100.9300
C8—C91.421 (5)C11—H110.9300
C9—C101.353 (5)C14—H140.9300
C11—C121.345 (5)C15—H150.9300
C12—C131.474 (5)C17—H170.9300
C12—C201.444 (4)C18—H180.9300
C13—C141.383 (5)C19—H19A0.9600
C13—C181.384 (5)C19—H19B0.9600
C14—C151.387 (5)C19—H19C0.9600
N1···H102.7800H2···C8iv3.0200
N1···H4i2.9300H4···H22.5000
N1···H5i2.8200H4···C1iv3.0100
N1···H19Aii2.8800H4···C10iv2.9700
C5···C13iii3.549 (5)H4···N1vii2.9300
C6···C13iii3.591 (5)H5···N1vii2.8200
C10···C203.049 (5)H7···H92.5200
C13···C5iv3.549 (5)H9···H72.5200
C13···C6iv3.591 (5)H9···C1viii3.0700
C20···C103.049 (5)H9···C2viii2.9600
C1···H9v3.0700H9···C3viii2.9900
C1···H4iii3.0100H10···N12.7800
C2···H9v2.9600H10···C122.9300
C3···H9v2.9900H10···C202.5000
C3···H2iii3.0800H11···C182.7100
C8···H2iii3.0200H11···H22.3500
C10···H4iii2.9700H11···H182.3500
C11···H182.8000H14···C202.6000
C12···H102.9300H15···H19C2.5100
C14···H19Bii3.0600H15···C16ix2.9000
C16···H15vi2.9000H15···C17ix3.0300
C17···H15vi3.0300H17···H19B2.4100
C18···H112.7100H18···C112.8000
C20···H102.5000H18···H112.3500
C20···H142.6000H19A···N1x2.8800
H2···H42.5000H19B···H172.4100
H2···H112.3500H19B···C14x3.0600
H2···C3iv3.0800H19C···H152.5100
C2—C1—C10118.4 (3)C1—C2—H2119.00
C2—C1—C11118.8 (2)C3—C2—H2119.00
C10—C1—C11122.7 (3)C3—C4—H4119.00
C1—C2—C3122.5 (3)C5—C4—H4120.00
C2—C3—C4123.0 (3)C4—C5—H5120.00
C2—C3—C8118.5 (3)C6—C5—H5120.00
C4—C3—C8118.6 (3)C5—C6—H6120.00
C3—C4—C5121.1 (3)C7—C6—H6120.00
C4—C5—C6120.4 (3)C6—C7—H7120.00
C5—C6—C7120.4 (3)C8—C7—H7119.00
C6—C7—C8121.0 (3)C8—C9—H9119.00
C3—C8—C7118.6 (3)C10—C9—H9119.00
C3—C8—C9118.5 (3)C1—C10—H10120.00
C7—C8—C9122.9 (3)C9—C10—H10120.00
C8—C9—C10121.6 (3)C1—C11—H11114.00
C1—C10—C9120.5 (3)C12—C11—H11114.00
C1—C11—C12131.4 (2)C13—C14—H14120.00
C11—C12—C13123.3 (3)C15—C14—H14119.00
C11—C12—C20121.5 (3)C14—C15—H15119.00
C13—C12—C20115.1 (3)C16—C15—H15119.00
C12—C13—C14120.8 (3)C16—C17—H17119.00
C12—C13—C18121.5 (3)C18—C17—H17119.00
C14—C13—C18117.7 (3)C13—C18—H18120.00
C13—C14—C15121.0 (4)C17—C18—H18120.00
C14—C15—C16121.2 (4)C16—C19—H19A109.00
C15—C16—C17117.7 (3)C16—C19—H19B110.00
C15—C16—C19121.0 (4)C16—C19—H19C110.00
C17—C16—C19121.3 (4)H19A—C19—H19B109.00
C16—C17—C18121.7 (4)H19A—C19—H19C109.00
C13—C18—C17120.6 (4)H19B—C19—H19C109.00
N1—C20—C12176.0 (5)
C10—C1—C2—C31.8 (5)C3—C8—C9—C101.3 (6)
C11—C1—C2—C3179.5 (3)C7—C8—C9—C10179.5 (4)
C2—C1—C10—C91.0 (6)C8—C9—C10—C10.5 (6)
C11—C1—C10—C9178.5 (4)C1—C11—C12—C13178.6 (4)
C2—C1—C11—C12158.4 (4)C1—C11—C12—C204.9 (7)
C10—C1—C11—C1224.1 (6)C11—C12—C13—C14142.5 (4)
C1—C2—C3—C4178.5 (3)C11—C12—C13—C1835.5 (6)
C1—C2—C3—C81.1 (5)C20—C12—C13—C1434.2 (5)
C2—C3—C4—C5179.7 (4)C20—C12—C13—C18147.8 (4)
C8—C3—C4—C50.7 (5)C12—C13—C14—C15176.8 (4)
C2—C3—C8—C7178.8 (3)C18—C13—C14—C151.3 (6)
C2—C3—C8—C90.5 (5)C12—C13—C18—C17177.5 (4)
C4—C3—C8—C71.6 (5)C14—C13—C18—C170.6 (6)
C4—C3—C8—C9179.9 (3)C13—C14—C15—C161.2 (6)
C3—C4—C5—C60.5 (6)C14—C15—C16—C170.4 (6)
C4—C5—C6—C70.8 (6)C14—C15—C16—C19177.4 (4)
C5—C6—C7—C80.2 (6)C15—C16—C17—C180.3 (6)
C6—C7—C8—C31.4 (6)C19—C16—C17—C18178.1 (4)
C6—C7—C8—C9179.6 (4)C16—C17—C18—C130.2 (6)
Symmetry codes: (i) x1/2, y+1, z; (ii) x1/2, y, z; (iii) x+1, y+1, z+1/2; (iv) x+1, y+1, z1/2; (v) x+1/2, y, z1/2; (vi) x+1, y, z+1/2; (vii) x+1/2, y+1, z; (viii) x+1/2, y, z+1/2; (ix) x+1, y, z1/2; (x) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1iv0.932.983.682 (4)134
C7—H7···Cg2viii0.932.933.695 (4)140
C9—H9···Cg1viii0.932.783.473 (4)133
Symmetry codes: (iv) x+1, y+1, z1/2; (viii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15N
Mr269.33
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.3194 (11), 16.4796 (16), 7.2596 (7)
V3)1473.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.28 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16248, 3659, 1549
Rint0.092
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 0.95
No. of reflections3659
No. of parameters192
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.932.983.682 (4)134
C7—H7···Cg2ii0.932.933.695 (4)140
C9—H9···Cg1ii0.932.783.473 (4)133
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

AMA acknowledges the Chemistry Department, Faculty of Science, King Abdul-Aziz University, for providing the laboratories and facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaidekker, M. A., Ling, T., Anglo, M., Stevens, H. Y., Frangos, J. A. & Theodorakis, E. A. (2001). Chem. Biol. 8, 123–131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamer, F. M. (1964). The Cyanine Dyes and Related Compounds, edited by A. Weissberger. New York, London: Wiley-Interscience.  Google Scholar
First citationLi, Q., Lin, G. L., Peng, B. X. & Li, Z. X. (1998). Dyes Pigments, 38, 211–218.  CAS Google Scholar
First citationMakoto, M., Hisato, T., Hiromitsu, T., Osamu, W., Tomohiko, M. & Seiji, T. (2000a). Jpn Kokai Tokkyo Koho Jpn, 260:566.  Google Scholar
First citationMakoto, M., Hisato, T., Hiromitsu, T., Osamu, W., Tomohiko, M. & Seiji, T. (2000b). Chem. Abstr. 133, 244894.  Google Scholar
First citationMousnier, A., Leh, H., Mouscadet, J. F. & Dargemont, C. (2004). Mol. Pharmacol. 66, 783–788.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, K. H., Lee, C. J., Song, D. H., Kim, J., Huh, Y. J. & Mm, K. S. (2001). Mol. Cryst. Liq. Cryst. 370, 165–168.  Web of Science CrossRef CAS Google Scholar
First citationPommeret, S., Gustavsson, T., Naskrecki, R., Baldacchino, G. & Mialocq, J. C. (1995). J. Mol. Liq. 64, 101–112.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpalletti, A. (2004). Photochem. Photobiol. Sci. 3, 695–699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds