supplementary materials


Acta Cryst. (2009). E65, o2495    [ doi:10.1107/S1600536809037064 ]

N'-[(E)-(5-Methylfuran-2-yl)methylidene]formohydrazide

Z. Shafiq, M. Yaqub, M. N. Tahir, M. H. Nawaz and M. S. Iqbal

Abstract top

The title compound, C7H8N2O2, is almost planar (r.m.s. deviation for non-H atoms = 0.029 Å). In the crystal, inversion dimers linked by pairs of N-H...O hydrogen bonds generate an R22(8) ring motif.

Comment top

In continuation of our studies of different derivatives of formohydrazide (Shafiq et al., 2009), the title compound (I, Fig. 1), has been prepared and being reported. The metal complexes of (I) has been prepared with transition metals and their various studies are in progress.

The crystal structures of (II) (E)-4-bromo-N'-((5-methylfuran-2-yl)methylene)benzohydrazide (Bai & Jing, 2007), (III) (E)-N'-((5-methylfuran-2-yl)methylene)furan-2-carbohydrazide (Yao & Jing, 2007) have been reported which contain the 5-methylfuran-2-yl moiety as present in (I). The title compound consists of dimers due to intermolecular H-bonding of type N–H···O (Table 1, Fig. 2) forming R22(8) (Bernstein et al., 1995) ring motif. Similar bonding also exist in N'-[(1E)-1-(4-Chlorophenyl)ethylidene]formohydrazide (Shafiq et al., 2009). The overall molecule of (I) is planar with an r.m.s. deviation of 0.0285 Å.

Related literature top

For related structures, see: Shafiq et al. (2009); Bai & Jing (2007); Yao & Jing (2007). For graph-set notaton, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of formohydrazide (1.0 g, 0.017 mol) in ethanol (10 ml) was added 5-methylfurfural (1.65 ml, 0.017 mol). The resultant mixture was then heated under reflux for 4 h and monitored through TLC. After completion of reaction, the mixture was cooled to room temperature. The crude solid was collected by suction filtration. The precipitates were washed with hot ethanol, filtered and dried. Brown needles of (I) were obtained by recrystalization from (1:1 v/v) methanol:1,4-dioxan.

Refinement top

The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 and 0.96 Å for aryl and methyl H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing if (I) which shows that molecules are dimerized and form ring motifs.
N'-[(E)-(5-methylfuran-2-yl)methylidene]formohydrazide top
Crystal data top
C7H8N2O2F(000) = 640
Mr = 152.15Dx = 1.326 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1864 reflections
a = 10.6433 (14) Åθ = 2.7–25.5°
b = 6.7762 (8) ŵ = 0.10 mm1
c = 21.129 (3) ÅT = 296 K
V = 1523.9 (3) Å3Cut needle, brown
Z = 80.25 × 0.15 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1403 independent reflections
Radiation source: fine-focus sealed tube655 reflections with I > 2σ(I)
graphiteRint = 0.072
Detector resolution: 7.80 pixels mm-1θmax = 25.5°, θmin = 2.7°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 58
Tmin = 0.985, Tmax = 0.988l = 2325
7485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
1403 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H8N2O2V = 1523.9 (3) Å3
Mr = 152.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.6433 (14) ŵ = 0.10 mm1
b = 6.7762 (8) ÅT = 296 K
c = 21.129 (3) Å0.25 × 0.15 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1403 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
655 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.072
7485 measured reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.12 e Å3
S = 1.00Δρmin = 0.16 e Å3
1403 reflectionsAbsolute structure: ?
101 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56771 (16)0.2958 (2)0.15544 (8)0.0550 (7)
O20.66434 (16)1.0759 (3)0.01153 (9)0.0665 (8)
N10.5699 (2)0.6414 (3)0.08604 (10)0.0486 (8)
N20.56384 (19)0.8059 (3)0.04784 (10)0.0497 (8)
C10.5376 (3)0.1184 (4)0.18332 (14)0.0602 (11)
C20.4218 (3)0.0664 (4)0.16579 (15)0.0717 (14)
C30.3762 (3)0.2130 (4)0.12461 (15)0.0641 (11)
C40.4667 (2)0.3504 (4)0.11942 (12)0.0481 (10)
C50.4735 (2)0.5290 (4)0.08350 (13)0.0501 (10)
C60.6618 (2)0.9277 (4)0.04483 (14)0.0542 (11)
C70.6371 (3)0.0296 (4)0.22318 (15)0.0950 (16)
H20.378920.046400.178500.0858*
H2A0.497240.829670.026090.0596*
H30.298230.214550.104750.0770*
H50.406300.564230.057720.0599*
H60.732030.898870.069300.0651*
H7A0.610900.099100.236900.1421*
H7B0.713160.018340.199040.1421*
H7C0.651680.111810.259430.1421*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0546 (12)0.0537 (12)0.0566 (13)0.0005 (9)0.0025 (11)0.0096 (10)
O20.0620 (14)0.0531 (12)0.0845 (17)0.0070 (9)0.0148 (11)0.0163 (11)
N10.0461 (14)0.0486 (13)0.0510 (16)0.0081 (12)0.0010 (12)0.0037 (12)
N20.0408 (13)0.0512 (13)0.0570 (16)0.0048 (12)0.0071 (12)0.0094 (12)
C10.074 (2)0.0447 (18)0.062 (2)0.0016 (16)0.0148 (19)0.0060 (16)
C20.080 (2)0.054 (2)0.081 (3)0.0146 (18)0.025 (2)0.0025 (17)
C30.0533 (19)0.068 (2)0.071 (2)0.0095 (17)0.0073 (17)0.0096 (18)
C40.0415 (16)0.0546 (19)0.0483 (19)0.0013 (15)0.0047 (14)0.0011 (15)
C50.0416 (16)0.0567 (18)0.052 (2)0.0088 (14)0.0007 (14)0.0003 (15)
C60.0454 (18)0.0562 (18)0.061 (2)0.0042 (15)0.0088 (16)0.0033 (17)
C70.116 (3)0.081 (2)0.088 (3)0.018 (2)0.004 (2)0.031 (2)
Geometric parameters (Å, °) top
O1—C11.377 (3)C3—C41.344 (4)
O1—C41.368 (3)C4—C51.430 (4)
O2—C61.227 (3)C2—H20.9300
N1—N21.378 (3)C3—H30.9300
N1—C51.279 (3)C5—H50.9300
N2—C61.331 (3)C6—H60.9300
N2—H2A0.8600C7—H7A0.9600
C1—C21.334 (4)C7—H7B0.9600
C1—C71.481 (4)C7—H7C0.9600
C2—C31.407 (4)
O1···N12.763 (3)C6···N1i3.318 (3)
O2···N1i3.268 (3)C6···C1iv3.461 (4)
O2···N2ii2.848 (3)C6···O2iii3.099 (3)
O2···C6i3.099 (3)C1···H7Avii3.0000
O1···H6iii2.8900C2···H7Avii3.0800
O2···H2Aii2.0000C6···H2Aii2.8000
O2···H6i2.7400H2A···H52.1500
N1···O12.763 (3)H2A···O2ii2.0000
N1···O2iii3.268 (3)H2A···C6ii2.8000
N1···C6iii3.318 (3)H2A···H2Aii2.5600
N2···C2iv3.408 (4)H5···H2A2.1500
N2···O2ii2.848 (3)H6···O1i2.8900
N1···H6iii2.7000H6···O2iii2.7400
C1···C6v3.461 (4)H6···N1i2.7000
C2···N2v3.408 (4)H7A···C1viii3.0000
C5···C5vi3.595 (4)H7A···C2viii3.0800
C1—O1—C4106.9 (2)C1—C2—H2126.00
N2—N1—C5114.8 (2)C3—C2—H2126.00
N1—N2—C6119.5 (2)C2—C3—H3127.00
N1—N2—H2A120.00C4—C3—H3127.00
C6—N2—H2A120.00N1—C5—H5119.00
C2—C1—C7135.3 (3)C4—C5—H5119.00
O1—C1—C2109.1 (2)O2—C6—H6118.00
O1—C1—C7115.6 (2)N2—C6—H6118.00
C1—C2—C3107.7 (3)C1—C7—H7A109.00
C2—C3—C4107.0 (3)C1—C7—H7B109.00
O1—C4—C5119.0 (2)C1—C7—H7C109.00
O1—C4—C3109.3 (2)H7A—C7—H7B109.00
C3—C4—C5131.7 (2)H7A—C7—H7C109.00
N1—C5—C4121.5 (2)H7B—C7—H7C110.00
O2—C6—N2123.5 (2)
C4—O1—C1—C20.7 (3)O1—C1—C2—C30.9 (3)
C4—O1—C1—C7178.2 (2)C7—C1—C2—C3177.7 (3)
C1—O1—C4—C30.2 (3)C1—C2—C3—C40.7 (4)
C1—O1—C4—C5178.5 (2)C2—C3—C4—O10.3 (3)
C5—N1—N2—C6177.0 (2)C2—C3—C4—C5178.8 (3)
N2—N1—C5—C4178.7 (2)O1—C4—C5—N12.4 (4)
N1—N2—C6—O2179.2 (2)C3—C4—C5—N1179.2 (3)
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+1, −y+2, −z; (iii) −x+3/2, y−1/2, z; (iv) x, y+1, z; (v) x, y−1, z; (vi) −x+1, −y+1, −z; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, y−1/2, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.862.002.848 (3)169
Symmetry codes: (ii) −x+1, −y+2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.002.848 (3)169
Symmetry codes: (i) −x+1, −y+2, −z.
Acknowledgements top

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

references
References top

Bai, Z.-C. & Jing, Z.-L. (2007). Acta Cryst. E63, o3822.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Shafiq, Z., Yaqub, M., Tahir, M. N., Nawaz, M. H. & Iqbal, M. S. (2009). Acta Cryst. E65, BQ2157.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yao, X.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o3900.