

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-5-[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonylmethyl]-3-methyl-1-(2,2,2-trifluoroethyl)-1*H*-pyrazole

Hong-Ju Ma, Qian-Fei Zhao, Xiang-Dong Mei and Jun Ning*

Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China

Correspondence e-mail: jning502@yahoo.com.cn

Received 14 September 2009; accepted 23 September 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.097; data-to-parameter ratio = 13.6.

The molecule of the title compound, $C_{12}H_{15}ClF_3N_3O_3S$, is twisted, as indicated by the C-S-C-C torsion angle of 66.00 (18)° for the atoms linking the ring systems. An intramolecular C-H···F short contact occurs. In the crystal, non-classical C-H···O interactions, one of which has a short H···O contact of 2.28 Å, link the molecules.

Related literature

For background to pyrazoles and their pharmacological and pharmaceutical applications, see: Hirai *et al.* (2002); Shiga *et al.* (2003); Ohno *et al.* (2004); Sabbagh *et al.* (2009); Sridhar *et al.* (2004); Zheng *et al.* (2009).

Experimental

Crystal data $C_{12}H_{15}CIF_{3}N_{3}O_{3}S$ $M_r = 373.78$ Monoclinic, $P2_1/n$ a = 16.034 (3) A b = 5.4319 (11) Å

c = 19.069 (4) Å $\beta = 106.71$ (3)° V = 1590.7 (6) Å³ Z = 4Cu $K\alpha$ radiation

organic compounds

 $0.39 \times 0.26 \times 0.25 \text{ mm}$

 $\mu = 3.83 \text{ mm}^{-1}$ T = 173 K

Data collection

Rigaku R-AXIS RAPID IP	11348 measured reflections
diffractometer	2891 independent reflections
Absorption correction: numerical	2568 reflections with $I > 2\sigma(I)$
(NUMABS; Higashi, 2003)	$R_{\rm int} = 0.073$
$T_{\min} = 0.317, \ T_{\max} = 0.448$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 212 parameters $wR(F^2) = 0.097$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.39$ e Å⁻³2891 reflections $\Delta \rho_{min} = -0.36$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots F1$	0.99	2.44	3.229 (3)	136
$C4-H4A\cdots O3^{i}$	0.98	2.60	3.325 (3)	131
$C5-H5A\cdots O2^{ii}$	0.99	2.31	3.146 (3)	141
$C7 - H7B \cdots O1^{iii}$	0.99	2.28	3.265 (3)	171

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, y + 1, z.

Data collection: *RAPID-AUTO* (Rigaku, 2001); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Major State Basic Research Development Program of China (No. 2010CB126106 and No. 2006CB101907), and the 863 high-tech key project of China (2006AA10A203).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5103).

References

- Higashi, T. (2003). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Hirai, K., Uchida, A. & Ohno, R. (2002). *Herbicide Classes in Development*, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 179–289. Heidelberg: Springer-Verlag.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). *J. Pestic. Sci.* 29, 15–26.
- Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sabbagh, O. I., Raraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). *Eur. J. Med. Chem.* 44, 3746–3753.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313–314.
- Sridhar, R., Perumal, P. T., Etti, S., Shanmugam, G., Ponnuswamy, M. N., Prabayathy, V. R. & Mathivanan, N. (2004). *Bioorg. Med. Chem. Lett.* 14, 6035–6040.
- Zheng, L. W., Wu, L. L., Zhao, B. X., Dong, W. L. & Miao, J. Y. (2009). Bioorg. Med. Chem. 17, 1957–1962.

supporting information

Acta Cryst. (2009). E65, o2567 [doi:10.1107/S1600536809038471]

4-Chloro-5-[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonylmethyl]-3methyl-1-(2,2,2-trifluoroethyl)-1*H*-pyrazole

Hong-Ju Ma, Qian-Fei Zhao, Xiang-Dong Mei and Jun Ning

S1. Comment

Pyrazoles are an important class of compounds, which possess widespread pharmacological properties in pharmaceuticals (Sridhar *et al.*, 2004; Zheng *et al.*, 2009; Sabbagh *et al.*, 2009) and agrochemicals (Shiga *et al.*, 2003; Ohno *et al.*, 2004). Various pyrazole derivatives with potent herbicidal activity have been synthesized and some are in use as herbicides such as pyrazolate, pyrazoxyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl (Hirai *et al.*, 2002). Recently, the new title compound (I) was synthesized in our group with high herbicidal activity. The crystal structure of the title compound is shown in Fig. 1.

S2. Experimental

The title compound (0.2 g) was dissolved in acetone (50 ml) at room temperature. Colourless blocks of (I) were obtained through slow evaporation after two weeks.

S3. Refinement

The H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

4-Chloro-5-[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonylmethyl]- 3-methyl-1-(2,2,2-trifluoroethyl)-1*H*-pyrazole

Crystal data	
$C_{12}H_{15}ClF_{3}N_{3}O_{3}S$	F(000) = 768
$M_r = 373.78$	$D_{\rm x} = 1.561 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2yn	Cell parameters from 11348 reflections
a = 16.034 (3) Å	$\theta = 3.2 - 68.2^{\circ}$
b = 5.4319 (11) Å	$\mu = 3.83 \text{ mm}^{-1}$
c = 19.069 (4) Å	T = 173 K
$\beta = 106.71 \ (3)^{\circ}$	Block, colourless
$V = 1590.7 (6) Å^3$	$0.39 \times 0.26 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Rigaku R-AXIS RAPID IP	11348 measured reflections
diffractometer	2891 independent reflections
Radiation source: rotating anode	2568 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.073$
ω scans	$\theta_{\rm max} = 68.2^\circ, \ \theta_{\rm min} = 3.2^\circ$
Absorption correction: numerical	$h = -16 \rightarrow 19$
(NUMABS; Higashi, 2003)	$k = -6 \rightarrow 5$
$T_{\min} = 0.317, \ T_{\max} = 0.448$	$l = -22 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0203P)^2 + 1.0073P]$
S = 1.09	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2891 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
212 parameters	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0054 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.44152 (4)	0.93466 (11)	0.09341 (4)	0.03950 (19)
S1	0.36881 (3)	0.46279 (10)	0.24281 (3)	0.02353 (17)
F1	0.10868 (10)	0.5476 (3)	0.06789 (10)	0.0610 (5)
F2	0.05756 (9)	0.1893 (3)	0.03398 (9)	0.0584 (5)
F3	0.09944 (9)	0.4206 (3)	-0.04032 (8)	0.0519 (5)
01	0.35709 (10)	0.2075 (3)	0.22345 (9)	0.0320 (4)
O2	0.34961 (10)	0.5475 (3)	0.30760 (9)	0.0355 (4)
O3	0.60616 (9)	0.5020 (3)	0.23839 (9)	0.0295 (4)
N1	0.29777 (12)	0.3998 (4)	-0.01380 (10)	0.0308 (5)
N2	0.27450 (11)	0.4064 (3)	0.04952 (10)	0.0252 (4)
N3	0.52262 (11)	0.4070 (3)	0.22312 (10)	0.0273 (4)
C1	0.37126 (13)	0.6956 (4)	0.06043 (13)	0.0286 (5)
C2	0.35682 (14)	0.5758 (5)	-0.00755 (13)	0.0311 (5)
C3	0.31789 (13)	0.5852 (4)	0.09606 (12)	0.0238 (5)
C4	0.39748 (17)	0.6278 (6)	-0.06716 (14)	0.0478 (7)
H4A	0.3737	0.5148	-0.1081	0.072*
H4B	0.4606	0.6049	-0.0486	0.072*
H4C	0.3848	0.7979	-0.0840	0.072*
C5	0.20776 (14)	0.2398 (4)	0.05769 (12)	0.0277 (5)
H5A	0.2192	0.1968	0.1101	0.033*
H5B	0.2102	0.0861	0.0304	0.033*
C6	0.11822 (15)	0.3496 (5)	0.03000 (14)	0.0358 (6)
C7	0.30537 (13)	0.6436 (4)	0.16871 (12)	0.0252 (5)

H7A	0.2431	0.6211	0.1654	0.030*	
H7B	0.3197	0.8193	0.1798	0.030*	
C8	0.47791 (13)	0.5464 (4)	0.25218 (11)	0.0217 (5)	
C9	0.61812 (13)	0.6994 (4)	0.29469 (12)	0.0262 (5)	
C10	0.52374 (13)	0.7681 (4)	0.29159 (13)	0.0280 (5)	
H10A	0.5161	0.7844	0.3411	0.034*	
H10B	0.5045	0.9214	0.2635	0.034*	
C11	0.66650 (17)	0.5831 (5)	0.36693 (14)	0.0415 (7)	
H11A	0.7212	0.5121	0.3632	0.062*	
H11B	0.6306	0.4531	0.3790	0.062*	
H11C	0.6791	0.7087	0.4055	0.062*	
C12	0.66893 (16)	0.9029 (5)	0.27166 (17)	0.0426 (7)	
H12A	0.7249	0.8382	0.2688	0.064*	
H12B	0.6791	1.0365	0.3077	0.064*	
H12C	0.6357	0.9658	0.2236	0.064*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0318 (3)	0.0362 (4)	0.0491 (4)	-0.0112 (2)	0.0094 (3)	0.0061 (3)
S1	0.0209 (3)	0.0256 (3)	0.0244 (3)	-0.0035 (2)	0.0071 (2)	-0.0022 (2)
F1	0.0316 (8)	0.0694 (12)	0.0759 (13)	0.0110 (8)	0.0057 (8)	-0.0260 (10)
F2	0.0300 (8)	0.0797 (13)	0.0579 (10)	-0.0223 (8)	0.0005 (7)	0.0141 (9)
F3	0.0366 (8)	0.0723 (12)	0.0408 (9)	0.0071 (8)	0.0018 (7)	0.0211 (8)
01	0.0305 (9)	0.0225 (9)	0.0404 (10)	-0.0064 (7)	0.0060 (7)	-0.0002 (7)
O2	0.0297 (9)	0.0528 (12)	0.0271 (9)	-0.0028 (8)	0.0132 (7)	-0.0060 (8)
O3	0.0204 (8)	0.0306 (9)	0.0379 (10)	-0.0020 (6)	0.0091 (7)	-0.0091 (7)
N1	0.0277 (10)	0.0423 (12)	0.0227 (10)	0.0014 (9)	0.0077 (8)	0.0003 (9)
N2	0.0234 (9)	0.0295 (10)	0.0227 (10)	-0.0022 (8)	0.0066 (8)	0.0004 (8)
N3	0.0219 (9)	0.0281 (10)	0.0308 (10)	-0.0018 (8)	0.0060 (8)	-0.0038 (8)
C1	0.0193 (11)	0.0307 (13)	0.0338 (13)	-0.0010 (9)	0.0047 (9)	0.0068 (10)
C2	0.0226 (11)	0.0424 (14)	0.0279 (13)	0.0016 (10)	0.0068 (10)	0.0081 (10)
C3	0.0207 (10)	0.0237 (11)	0.0262 (12)	0.0025 (8)	0.0053 (9)	0.0014 (9)
C4	0.0345 (14)	0.079 (2)	0.0333 (15)	-0.0023 (14)	0.0147 (11)	0.0113 (14)
C5	0.0269 (11)	0.0280 (12)	0.0261 (12)	-0.0059 (9)	0.0043 (9)	0.0015 (9)
C6	0.0242 (12)	0.0444 (15)	0.0368 (14)	-0.0086 (11)	0.0054 (10)	0.0017 (12)
C7	0.0212 (10)	0.0238 (11)	0.0309 (12)	0.0018 (9)	0.0080 (9)	-0.0027 (9)
C8	0.0198 (10)	0.0211 (11)	0.0231 (11)	0.0010 (8)	0.0043 (9)	-0.0008 (8)
C9	0.0221 (11)	0.0208 (11)	0.0335 (13)	-0.0012 (9)	0.0048 (9)	-0.0038 (9)
C10	0.0221 (11)	0.0248 (12)	0.0365 (13)	-0.0030 (9)	0.0076 (9)	-0.0079 (10)
C11	0.0348 (14)	0.0444 (16)	0.0367 (15)	0.0013 (11)	-0.0034 (11)	-0.0013 (12)
C12	0.0295 (13)	0.0306 (14)	0.070 (2)	-0.0011 (10)	0.0186 (13)	0.0039 (13)

Geometric parameters (Å, °)

Cl1—C1	1.716 (2)	C4—H4B	0.9800
S1—O2	1.4324 (16)	C4—H4C	0.9800
S1—O1	1.4333 (16)	C5—C6	1.503 (3)

S1—C8	1.766 (2)	С5—Н5А	0.9900
S1—C7	1.780 (2)	С5—Н5В	0.9900
F1—C6	1.329 (3)	C7—H7A	0.9900
F2—C6	1.324 (3)	С7—Н7В	0.9900
F3—C6	1.344 (3)	C8—C10	1.496 (3)
03—N3	1.386 (2)	C9—C12	1.511 (3)
03-09	1.490 (3)	C9—C11	1.511 (3)
N1—C2	1 327 (3)	C9—C10	1 543 (3)
N1—N2	1 363 (2)	C10—H10A	0.9900
N2-C3	1 364 (3)	C10—H10B	0.9900
N2-C5	1 444 (3)	C11—H11A	0.9800
N3—C8	1.774(3)	C11_H11B	0.9800
C1 - C3	1.271(3) 1 374(3)		0.9800
C1 - C2	1 409 (3)	C12—H12A	0.9800
$C_1 = C_2$	1.407(3)	C12 H12R	0.9800
$C_2 = C_7$	1.491(3) 1 400(3)	C12 - H12C	0.9800
C_{3}	0.0800	C12—III2C	0.9800
С4—п4А	0.9800		
02 - 51 - 01	119 23 (10)	F2	111.2 (2)
02 - 51 - 01	106.40(10)	$F_{12} = C_{0} = C_{2}$	111.2(2) 112.21(10)
02 - 51 - C8	100.40(10) 109.12(10)	F_{3}	112.21(1)) 112.4(2)
0^{2} S1 C7	105.12(10) 106.96(10)	$C_3 = C_7 = S_1$	112.4(2) 114.93(15)
02 - 51 - C7	100.90(10) 100.07(10)	$C_3 = C_7 = H_7 \Lambda$	108 5
$C_{1}^{2} = C_{1}^{2}$	109.07(10) 105.17(10)	C_{3} C_{7} H_{7}	108.5
$V_0 = V_1 = V_1$	103.17(10) 100.60(15)	$SI = C / = \Pi / A$ $C^2 = C^7 = \Pi / P$	108.5
$N_{3} = 0_{3} = 0_{3}$	109.00(13) 105.74(10)	C_{3} $-C_{7}$ H_{7} $H_{$	108.5
$C_2 - N_1 - N_2$	103.74(19) 112.16(19)	$SI = C / = \Pi / B$	108.5
N1 - N2 - C5	112.10(18)	$\Pi/A = C/= \Pi/B$	107.5
NI = N2 = C5	118.02(18)	$N_{3} = C_{8} = C_{10}$	110.13 (19)
$C_3 = N_2 = C_3$	129.10(19)	$N_{3} = C_{8} = S_{1}$	117.92 (16)
$C_8 = N_3 = O_3$	108.56 (17)		125.96 (16)
$C_3 - C_1 - C_2$	107.0 (2)	03-09-012	106.57 (19)
	125.86 (19)	03-09-011	106.36 (18)
	127.13 (18)		113.1 (2)
NI—C2—CI	109.9 (2)	03-09-010	103.00 (16)
N1—C2—C4	121.7 (2)	C12—C9—C10	114.63 (19)
C1—C2—C4	128.5 (2)	C11—C9—C10	112.1 (2)
N2—C3—C1	105.2 (2)	C8—C10—C9	99.16 (17)
N2—C3—C7	125.2 (2)	C8—C10—H10A	111.9
C1—C3—C7	129.5 (2)	C9—C10—H10A	111.9
C2—C4—H4A	109.5	C8—C10—H10B	111.9
C2—C4—H4B	109.5	C9—C10—H10B	111.9
H4A—C4—H4B	109.5	H10A—C10—H10B	109.6
C2—C4—H4C	109.5	C9—C11—H11A	109.5
H4A—C4—H4C	109.5	C9—C11—H11B	109.5
H4B—C4—H4C	109.5	H11A—C11—H11B	109.5
N2—C5—C6	112.07 (19)	C9—C11—H11C	109.5
N2—C5—H5A	109.2	H11A—C11—H11C	109.5
C6—C5—H5A	109.2	H11B—C11—H11C	109.5

N2—C5—H5B	109.2	C9—C12—H12A	109.5
C6—C5—H5B	109.2	C9—C12—H12B	109.5
H5A—C5—H5B	107.9	H12A—C12—H12B	109.5
F2—C6—F1	107.5 (2)	C9—C12—H12C	109.5
F2—C6—F3	106.76 (19)	H12A—C12—H12C	109.5
F1—C6—F3	106.4 (2)	H12B-C12-H12C	109.5
C2—N1—N2—C3	0.1 (2)	N2—C3—C7—S1	86.0 (2)
C2—N1—N2—C5	177.64 (19)	C1—C3—C7—S1	-95.8 (3)
C9—O3—N3—C8	11.2 (2)	O2—S1—C7—C3	178.87 (16)
N2—N1—C2—C1	0.0 (2)	O1—S1—C7—C3	-50.91 (19)
N2—N1—C2—C4	-179.3 (2)	C8—S1—C7—C3	66.00 (18)
C3—C1—C2—N1	-0.2 (3)	O3—N3—C8—C10	1.4 (3)
Cl1—C1—C2—N1	180.00 (17)	O3—N3—C8—S1	-178.52 (13)
C3—C1—C2—C4	179.0 (2)	O2—S1—C8—N3	148.32 (18)
Cl1—C1—C2—C4	-0.8 (4)	O1—S1—C8—N3	18.5 (2)
N1—N2—C3—C1	-0.2 (2)	C7—S1—C8—N3	-98.41 (19)
C5—N2—C3—C1	-177.4 (2)	O2—S1—C8—C10	-31.6 (2)
N1—N2—C3—C7	178.34 (19)	O1—S1—C8—C10	-161.43 (18)
C5—N2—C3—C7	1.2 (3)	C7—S1—C8—C10	81.7 (2)
C2-C1-C3-N2	0.2 (2)	N3-03-C9-C12	-139.32 (18)
Cl1—C1—C3—N2	-179.92 (16)	N3—O3—C9—C11	99.8 (2)
C2—C1—C3—C7	-178.3 (2)	N3—O3—C9—C10	-18.3 (2)
Cl1—C1—C3—C7	1.6 (3)	N3-C8-C10-C9	-12.4 (3)
N1—N2—C5—C6	-89.8 (2)	S1—C8—C10—C9	167.48 (16)
C3—N2—C5—C6	87.3 (3)	O3—C9—C10—C8	17.0 (2)
N2—C5—C6—F2	176.34 (19)	C12—C9—C10—C8	132.3 (2)
N2-C5-C6-F1	-63.3 (3)	C11—C9—C10—C8	-96.9 (2)
N2—C5—C6—F3	56.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C7—H7 <i>A</i> …F1	0.99	2.44	3.229 (3)	136
C4—H4A···O3 ⁱ	0.98	2.60	3.325 (3)	131
C5—H5 <i>A</i> ···O2 ⁱⁱ	0.99	2.31	3.146 (3)	141
C7—H7 <i>B</i> ···O1 ⁱⁱⁱ	0.99	2.28	3.265 (3)	171

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1/2, *y*-1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*.