metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(6,6′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II)

aDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran, bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com

(Received 17 September 2009; accepted 21 September 2009; online 26 September 2009)

In the title compound, [ZnCl2(C12H12N2)], the complete mol­ecule is generated by crystallographic mirror symmetry, with the Zn atom and both chloride ions lying on the reflecting plane, yielding a distorted ZnN2Cl2 tetra­hedral coordination for the metal ion. In the crystal, there are ππ contacts between the pyridine rings [centroid–centroid distance = 3.7857 (17) Å].

Related literature

For related structures containing Zn bonded to two chloride ions and a phenanthroline/bipyridine derivative, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.], 2009a[Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009a). Acta Cryst. E65, m848-m849.],b[Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009b). Acta Cryst. E65, m1169-m1170.]); Alizadeh et al. (2009[Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.]); Gruia et al. (2007[Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825-1840.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Khan & Tuck (1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Khoshtarkib et al. (2009[Khoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739-m740.]); Kozhevnikov et al. (2006[Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025-7029.]); Liu et al. (2004[Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.]); Preston & Kennard (1969[Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965-1968.]); Reimann et al. (1966[Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185-1189.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C12H12N2)]

  • Mr = 320.53

  • Monoclinic, P 21 /m

  • a = 7.6957 (15) Å

  • b = 11.266 (2) Å

  • c = 8.1431 (16) Å

  • β = 110.61 (3)°

  • V = 660.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 298 K

  • 0.40 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.421, Tmax = 0.512

  • 8852 measured reflections

  • 2075 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.26

  • 2075 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.0569 (18)
Zn1—Cl1 2.2013 (11)
Zn1—Cl2 2.2035 (10)
N1i—Zn1—N1 80.71 (10)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthes and crystal structure of [ZnCl2(phend)], (II), (Khoshtarkib et al., 2009), [HgBr2(2,9-dmphen)], (III), (Alizadeh et al., 2009), [HgCl2(2,9-dmPh2phen)].0.5 CH3CN, (IV) (Ahmadi, et al., 2009a) and [Pb4(NO3)8(6-mbpy)4], (V), (Ahmadi, et al., 2009b) [where phend is phenanthridine, 2,9-dmphen is 2,9-dimethyl-1,10-phenanthroline, 2,9-dmPh2phen is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline and 6-mbpy is 6-methyl-2,2'-bipyridine].

There are several ZnII complexes, with formula, [ZnCl2(N—N)], such as [ZnCl2(bipy)], (VI), (Khan & Tuck, 1984), [ZnCl2(biim)], (VII), (Gruia et al., 2007), [ZnCl2(phbipy)], (IIX), (Kozhevnikov et al., 2006), [ZnCl2(phen)], (IX), (Reimann et al., 1966), [ZnCl2(dmphen)], (X), (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (XI), (Liu et al., 2004), [ZnCl2(dm4bt)], (XII), (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (XIII), (Khalighi et al., 2008) and [ZnCl2(6-mbpy)], (XIV), (Ahmadi, Kalateh, Ebadi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole and 5,5'-dmbpy 5,5'-dimethyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound, (I), (Fig. 1), contains half molecule. The ZnII atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 6,6'-dimethyl-2,2'-bipyridine and two terminal Cl atoms. The Zn—Cl and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, the π-π contacts between the rings A (N1/C2—C6) and rings A, Cg2···Cg2i [distance = 3.7857 (17) Å, symmetry cods: 1-X,2-Y,1-Z]. It seems this π-π stacking is effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For related structures containing Zn bonded to two chloride ions and a phenanthroline/bipyridine derivative, see: Ahmadi et al. (2008, 2009a,b); Alizadeh et al. (2009); Gruia et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Khoshtarkib et al. (2009); Kozhevnikov et al. (2006); Liu et al. (2004); Preston & Kennard (1969); Reimann et al. (1966).

Experimental top

A solution of 6,6'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnCl2 (0.15 g, 0.88 mmol) in acetonitrile (10 ml) and the resulting colourless solution was stirred for 20 min at at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prisms of (I) were isolated (yield 0.26 g, 73.7%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93–0.96Å and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) x,-y + 3/2,z]
[Figure 2] Fig. 2. Tha unit-cell packing of (I).
Dichlorido(6,6'-dimethyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnCl2(C12H12N2)]F(000) = 324
Mr = 320.53Dx = 1.611 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1170 reflections
a = 7.6957 (15) Åθ = 2.8–30.6°
b = 11.266 (2) ŵ = 2.24 mm1
c = 8.1431 (16) ÅT = 298 K
β = 110.61 (3)°Prism, colourless
V = 660.8 (3) Å30.40 × 0.33 × 0.30 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2075 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 30.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.421, Tmax = 0.512k = 1616
8852 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.036P)2 + 0.4143P]
where P = (Fo2 + 2Fc2)/3
2075 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[ZnCl2(C12H12N2)]V = 660.8 (3) Å3
Mr = 320.53Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.6957 (15) ŵ = 2.24 mm1
b = 11.266 (2) ÅT = 298 K
c = 8.1431 (16) Å0.40 × 0.33 × 0.30 mm
β = 110.61 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1972 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.512Rint = 0.043
8852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.26Δρmax = 0.70 e Å3
2075 reflectionsΔρmin = 0.55 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9103 (5)1.0397 (3)0.7493 (4)0.0605 (7)
H1A0.86261.01610.83860.091*
H1B0.90851.12470.74050.091*
H1C1.03551.01170.77930.091*
C20.7921 (3)0.9875 (2)0.5768 (3)0.0415 (5)
C30.6959 (4)1.0566 (2)0.4331 (4)0.0525 (6)
H30.70411.13890.44130.063*
C40.5891 (4)1.0046 (3)0.2791 (4)0.0524 (6)
H40.52461.05120.18250.063*
C50.5776 (3)0.8820 (2)0.2679 (3)0.0424 (5)
H50.50530.84490.16440.051*
C60.6762 (3)0.81599 (18)0.4143 (3)0.0317 (4)
N10.7813 (2)0.86822 (16)0.5661 (2)0.0330 (3)
Cl11.20088 (11)0.75000.88188 (13)0.0521 (2)
Cl20.74082 (14)0.75000.94980 (13)0.0511 (2)
Zn10.89560 (5)0.75000.76788 (4)0.03392 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0688 (19)0.0401 (13)0.0625 (17)0.0094 (12)0.0104 (15)0.0154 (12)
C20.0457 (12)0.0306 (10)0.0480 (12)0.0039 (8)0.0162 (10)0.0032 (8)
C30.0694 (17)0.0281 (10)0.0616 (16)0.0033 (10)0.0249 (14)0.0063 (10)
C40.0641 (16)0.0434 (13)0.0473 (13)0.0122 (12)0.0168 (12)0.0161 (11)
C50.0453 (12)0.0424 (12)0.0342 (10)0.0048 (9)0.0074 (9)0.0057 (9)
C60.0326 (9)0.0308 (9)0.0300 (8)0.0014 (7)0.0091 (7)0.0016 (7)
N10.0341 (8)0.0288 (8)0.0328 (8)0.0010 (6)0.0075 (6)0.0002 (6)
Cl10.0325 (4)0.0642 (6)0.0492 (5)0.0000.0014 (3)0.000
Cl20.0548 (5)0.0567 (5)0.0479 (4)0.0000.0255 (4)0.000
Zn10.03172 (18)0.03621 (19)0.02830 (18)0.0000.00368 (12)0.000
Geometric parameters (Å, º) top
C1—C21.499 (4)C4—H40.9300
C1—H1A0.9600C5—C61.383 (3)
C1—H1B0.9600C5—H50.9300
C1—H1C0.9600C6—N11.350 (3)
C2—N11.347 (3)C6—C6i1.487 (4)
C2—C31.384 (4)Zn1—N12.0569 (18)
C3—C41.366 (4)Zn1—Cl12.2013 (11)
C3—H30.9300Zn1—Cl22.2035 (10)
C4—C51.386 (4)Zn1—N1i2.0569 (18)
C2—C1—H1A109.5C6—C5—C4118.4 (2)
C2—C1—H1B109.5C6—C5—H5120.8
H1A—C1—H1B109.5C4—C5—H5120.8
C2—C1—H1C109.5N1—C6—C5121.6 (2)
H1A—C1—H1C109.5N1—C6—C6i115.83 (11)
H1B—C1—H1C109.5C5—C6—C6i122.51 (14)
N1—C2—C3120.3 (2)C2—N1—C6119.82 (19)
N1—C2—C1117.1 (2)C2—N1—Zn1126.50 (16)
C3—C2—C1122.6 (2)C6—N1—Zn1113.51 (13)
C4—C3—C2120.3 (2)N1i—Zn1—N180.71 (10)
C4—C3—H3119.8N1i—Zn1—Cl1115.45 (6)
C2—C3—H3119.8N1—Zn1—Cl1115.45 (6)
C3—C4—C5119.5 (2)N1i—Zn1—Cl2110.90 (6)
C3—C4—H4120.3N1—Zn1—Cl2110.90 (6)
C5—C4—H4120.3Cl1—Zn1—Cl2117.76 (5)
N1—C2—C3—C40.0 (4)C5—C6—N1—C20.2 (3)
C1—C2—C3—C4179.6 (3)C6i—C6—N1—C2178.78 (16)
C2—C3—C4—C50.1 (5)C5—C6—N1—Zn1175.34 (17)
C3—C4—C5—C60.2 (4)C6i—C6—N1—Zn15.7 (3)
C4—C5—C6—N10.3 (4)C2—N1—Zn1—N1i178.10 (16)
C4—C5—C6—C6i178.63 (19)C6—N1—Zn1—N1i6.69 (17)
C3—C2—N1—C60.0 (4)C2—N1—Zn1—Cl164.2 (2)
C1—C2—N1—C6179.7 (2)C6—N1—Zn1—Cl1120.55 (13)
C3—C2—N1—Zn1174.88 (19)C2—N1—Zn1—Cl273.0 (2)
C1—C2—N1—Zn14.7 (3)C6—N1—Zn1—Cl2102.24 (14)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C12H12N2)]
Mr320.53
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)7.6957 (15), 11.266 (2), 8.1431 (16)
β (°) 110.61 (3)
V3)660.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.40 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.421, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
8852, 2075, 1972
Rint0.043
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.26
No. of reflections2075
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.55

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N12.0569 (18)Zn1—Cl22.2035 (10)
Zn1—Cl12.2013 (11)
N1i—Zn1—N180.71 (10)
Symmetry code: (i) x, y+3/2, z.
 

Acknowledgements

We are grateful to the Damghan University of Basic Sciences and Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009a). Acta Cryst. E65, m848–m849.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009b). Acta Cryst. E65, m1169–m1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739–m740.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025–7029.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPreston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968.  Google Scholar
First citationReimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds