organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(6-Nitro­benzo[d][1,3]dioxol-5-yl)-1-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

aChemistry Department, University of Isfahan, Isfahan, 81746-73441, Iran, bUniversity of Malaya, Department of Chemistry, 50603, Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran
*Correspondence e-mail: loghmani_h@yahoo.com

(Received 1 September 2009; accepted 9 September 2009; online 26 September 2009)

In the mol­ecule of the title compound, C19H17NO8, the benzodioxole unit is oriented at a dihedral angle of 61.45 (6)° with respect to the meth­oxy-substituted phenyl ring. The nitro group is not co-planar to the benzene ring to which it is attached, making a dihedral angle of 31.86 (17)°. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains through R22(8) ring motifs. The ππ contacts between the benzodioxole rings, [centroid–centroid distances = 3.7610 (9), 3.6613 (9) and 3.7975 (9) Å] may further stabilize the structure.

Related literature

For general background to synthesis, see: Nielsen & Houlihan (1968[Nielsen, A. T. & Houlihan, W. J. (1968). Org. React. 16, 1-10.]); Ko et al. (2003[Ko, H. H., Taso, L. T., Yu, K. L., Liu, C. T., Wang, J. P. & Lon, C. N. (2003). Bioorg. Med. Chem. 11, 105-111.]); Go et al. (2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For related structures, see: Lawrence et al. (2006[Lawrence, N. J., Patterson, R. P., Ooi, L.-L., Cook, D. & Ducki, S. (2006). Bioorg. Med. Chem. 16, 5844-5848.]); Liu et al. (2002[Liu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, o445-o446.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO8

  • Mr = 387.34

  • Triclinic, [P \overline 1]

  • a = 7.3044 (1) Å

  • b = 10.1264 (1) Å

  • c = 12.8600 (2) Å

  • α = 93.112 (1)°

  • β = 103.959 (1)°

  • γ = 105.384 (1)°

  • V = 882.91 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.24 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.989

  • 4805 measured reflections

  • 3038 independent reflections

  • 2733 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.04

  • 3038 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.55 3.4512 (16) 164
C6—H6A⋯O6ii 0.93 2.36 3.2429 (16) 158
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aldol condensation reactions are important synthetic reactions and by classical methods they were performed in the presence of strong bases (Nielsen & Houlihan, 1968). Chalcones are open chain flavonides consisting of two aromatic rings linked by an α,β-unsaturated keton moiety. Chalcones have shown a wide variety of anticancer (Lawrence et al., 2006), anti-inflammatory (Ko et al., 2003), antimicrobial (Go et al., 2005) and antifungal (Nowakowska, 2007) activies. Crystal structures of some Chalcones were reported (Lawrence et al., 2006; Liu et al., 2002). They showed the Chalcone molecules are in s-trans conformation.

In the molecule of the title compound, (Fig. 1), a new chalcone derivative, the dihedral angle between the benzodioxole ring and the methoxy-substituted phenyl ring is 61.45 (6)°. The nitro-group is tilted with respect to the benzene ring to which it is attached by a dihedral angle of 31.86 (17)°.

In the crystal structure, intermolecular C-H···O interactions link the molecules into chains through R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π···π contacts between the benzodioxole rings, Cg1—Cg2i, Cg2—Cg2i and Cg2—Cg2ii [symmetry codes: (i) -x, 2 - y, -z, (ii) 1 - x, 2 - y, -z, where Cg1 and Cg2 are centroids of the rings (O4/O5/C7/C8/C16) and (C4-C9), respectively] may further stabilize the structure, with centroid-centroid distances of 3.7610 (9), 3.6613 (9) and 3.7975 (9) Å, respectively.

Related literature top

For general background, see: Nielsen & Houlihan (1968); Ko et al. (2003); Go et al. (2005); Nowakowska (2007). For related structures, see: Lawrence et al. (2006); Liu et al. (2002). For ring motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained according to a literature method (Lawrence et al., 2006), and crystallized in glacial acetic acid. Pale yellow, solid; m.p. 477-479 K; 1H NMR (400 MHz; CDCl3): δ 7.70 (d, 1H, J = 16 Hz), 7.50 (s, 1H), 7.24 (s, 1H), 6.70 (d, 1H, J = 16 Hz), 6.19 (s, 2H), 6.08 (s, 2H), 3.88 (s, 3H), 3.76 (s, 6H). 13C NMR (126 MHz; CDCl3): δ 194.3 (CO), 162.3 (C), 160.0(C), 151.9 (C), 148.0 (C), 146.0 (C), 145.0 (C), 142.9 (C), 140.6 (C), 132.6 (C), 120.0 (CH), 114.3 (C), 107.5 (CH), 105.6 (CH), 103.3 (CH), 90.5 (CH2), 55.0 (3CH3). IR (KBr, cm-1 ): 3015, 1647 (CO), 1605, 1492, 1511, 1488, 891, 823, 762, 649.

Refinement top

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
(E)-3-(6-Nitrobenzo[d][1,3]dioxol-5-yl)-1-(2,4,6- trimethoxyphenyl) prop-2-en-1-one top
Crystal data top
C19H17NO8Z = 2
Mr = 387.34F(000) = 404
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Melting point: 497 K K
a = 7.3044 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1264 (1) ÅCell parameters from 3206 reflections
c = 12.8600 (2) Åθ = 2.5–32.5°
α = 93.112 (1)°µ = 0.12 mm1
β = 103.959 (1)°T = 296 K
γ = 105.384 (1)°Prism, pale yellow
V = 882.91 (2) Å30.24 × 0.14 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube2733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 87
Tmin = 0.973, Tmax = 0.989k = 1112
4805 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.3499P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H17NO8γ = 105.384 (1)°
Mr = 387.34V = 882.91 (2) Å3
Triclinic, P1Z = 2
a = 7.3044 (1) ÅMo Kα radiation
b = 10.1264 (1) ŵ = 0.12 mm1
c = 12.8600 (2) ÅT = 296 K
α = 93.112 (1)°0.24 × 0.14 × 0.10 mm
β = 103.959 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2733 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.013
4805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3038 reflectionsΔρmin = 0.22 e Å3
256 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15752 (13)0.44029 (9)0.12868 (7)0.0209 (2)
O20.54955 (19)1.20445 (11)0.27950 (9)0.0430 (3)
O30.37219 (16)1.00784 (10)0.30427 (8)0.0309 (3)
O40.11057 (18)1.00352 (10)0.19561 (8)0.0355 (3)
O50.21032 (16)1.22795 (10)0.11005 (8)0.0298 (3)
O60.58160 (13)0.48499 (9)0.17340 (7)0.0198 (2)
O70.86143 (14)0.63490 (10)0.54849 (7)0.0249 (2)
O80.23749 (13)0.69600 (10)0.35796 (7)0.0210 (2)
N10.42880 (18)1.09155 (12)0.24520 (9)0.0240 (3)
C10.25053 (18)0.55935 (13)0.16689 (10)0.0163 (3)
C20.20715 (19)0.67463 (13)0.11028 (10)0.0180 (3)
H2A0.09690.65530.05150.022*
C30.31798 (19)0.80537 (13)0.13907 (10)0.0186 (3)
H3A0.42240.82470.20100.022*
C40.28680 (19)0.92101 (13)0.07998 (10)0.0185 (3)
C50.34552 (19)1.05839 (14)0.12818 (10)0.0191 (3)
C60.3278 (2)1.17065 (14)0.07231 (11)0.0210 (3)
H6A0.36921.26070.10690.025*
C70.24566 (19)1.13955 (14)0.03640 (11)0.0207 (3)
C80.1851 (2)1.00527 (14)0.08729 (11)0.0224 (3)
C90.2033 (2)0.89551 (14)0.03263 (11)0.0217 (3)
H9A0.16160.80630.06880.026*
C100.41339 (19)0.58819 (13)0.26927 (10)0.0169 (3)
C110.40319 (19)0.65461 (13)0.36469 (10)0.0177 (3)
C120.55162 (19)0.67427 (13)0.46034 (10)0.0193 (3)
H12A0.54430.71960.52340.023*
C130.71059 (19)0.62434 (13)0.45897 (11)0.0195 (3)
C140.72776 (19)0.55933 (13)0.36521 (11)0.0194 (3)
H14A0.83670.52810.36560.023*
C150.57876 (19)0.54221 (13)0.27107 (10)0.0169 (3)
C160.1199 (2)1.14409 (14)0.21227 (11)0.0261 (3)
H16A0.19681.17360.26310.031*
H16B0.01151.15230.24140.031*
C170.7629 (2)0.46353 (15)0.16380 (12)0.0242 (3)
H17A0.75480.44140.08900.036*
H17B0.78680.38870.20250.036*
H17C0.86870.54600.19340.036*
C180.8713 (2)0.72180 (16)0.64213 (12)0.0313 (4)
H18A0.99390.73260.69500.047*
H18B0.76400.68070.67180.047*
H18C0.86270.81050.62260.047*
C190.2283 (2)0.77177 (15)0.45311 (11)0.0245 (3)
H19A0.10950.79940.43800.037*
H19B0.34010.85220.47490.037*
H19C0.22890.71440.51020.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (5)0.0174 (5)0.0213 (5)0.0041 (4)0.0013 (4)0.0011 (4)
O20.0559 (8)0.0233 (6)0.0267 (6)0.0099 (5)0.0077 (5)0.0010 (5)
O30.0430 (6)0.0253 (5)0.0209 (5)0.0040 (5)0.0081 (5)0.0036 (4)
O40.0602 (8)0.0213 (5)0.0176 (5)0.0108 (5)0.0022 (5)0.0031 (4)
O50.0397 (6)0.0189 (5)0.0248 (5)0.0073 (4)0.0019 (4)0.0049 (4)
O60.0191 (5)0.0208 (5)0.0201 (5)0.0070 (4)0.0056 (4)0.0017 (4)
O70.0214 (5)0.0317 (5)0.0189 (5)0.0096 (4)0.0015 (4)0.0012 (4)
O80.0195 (5)0.0269 (5)0.0177 (5)0.0104 (4)0.0037 (4)0.0013 (4)
N10.0283 (7)0.0188 (6)0.0209 (6)0.0050 (5)0.0013 (5)0.0001 (5)
C10.0148 (6)0.0180 (7)0.0170 (6)0.0045 (5)0.0063 (5)0.0001 (5)
C20.0171 (7)0.0220 (7)0.0151 (6)0.0077 (5)0.0028 (5)0.0012 (5)
C30.0184 (7)0.0216 (7)0.0160 (6)0.0075 (5)0.0036 (5)0.0005 (5)
C40.0163 (7)0.0189 (7)0.0203 (7)0.0048 (5)0.0049 (5)0.0021 (5)
C50.0165 (7)0.0207 (7)0.0175 (7)0.0033 (5)0.0023 (5)0.0000 (5)
C60.0195 (7)0.0158 (7)0.0250 (7)0.0037 (5)0.0033 (6)0.0006 (5)
C70.0193 (7)0.0184 (7)0.0250 (7)0.0065 (5)0.0049 (6)0.0055 (5)
C80.0245 (7)0.0233 (7)0.0176 (7)0.0069 (6)0.0025 (6)0.0014 (5)
C90.0268 (7)0.0165 (7)0.0204 (7)0.0059 (6)0.0044 (6)0.0006 (5)
C100.0183 (7)0.0137 (6)0.0169 (6)0.0026 (5)0.0036 (5)0.0027 (5)
C110.0170 (7)0.0157 (6)0.0201 (7)0.0042 (5)0.0047 (5)0.0029 (5)
C120.0209 (7)0.0187 (7)0.0171 (6)0.0042 (5)0.0050 (5)0.0010 (5)
C130.0179 (7)0.0180 (6)0.0191 (7)0.0022 (5)0.0008 (5)0.0045 (5)
C140.0166 (7)0.0177 (6)0.0242 (7)0.0057 (5)0.0048 (5)0.0042 (5)
C150.0193 (7)0.0118 (6)0.0189 (6)0.0024 (5)0.0060 (5)0.0018 (5)
C160.0305 (8)0.0225 (7)0.0227 (7)0.0070 (6)0.0018 (6)0.0069 (6)
C170.0231 (7)0.0251 (7)0.0281 (7)0.0102 (6)0.0105 (6)0.0011 (6)
C180.0335 (9)0.0357 (9)0.0194 (7)0.0127 (7)0.0045 (6)0.0014 (6)
C190.0243 (7)0.0323 (8)0.0191 (7)0.0121 (6)0.0063 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C11.2234 (16)C6—H6A0.9300
O2—N11.2257 (16)C7—C81.3847 (19)
O3—N11.2257 (16)C8—C91.3657 (19)
O4—C81.3651 (16)C9—H9A0.9300
O4—C161.4372 (17)C10—C111.3946 (18)
O5—C71.3644 (16)C10—C151.4009 (18)
O5—C161.4310 (17)C11—C121.3941 (19)
O6—C151.3615 (15)C12—C131.3874 (19)
O6—C171.4299 (16)C12—H12A0.9300
O7—C131.3649 (16)C13—C141.3905 (19)
O7—C181.4280 (17)C14—C151.3862 (19)
O8—C111.3677 (15)C14—H14A0.9300
O8—C191.4339 (16)C16—H16A0.9700
N1—C51.4637 (17)C16—H16B0.9700
C1—C21.4732 (18)C17—H17A0.9600
C1—C101.5007 (18)C17—H17B0.9600
C2—C31.3337 (19)C17—H17C0.9600
C2—H2A0.9300C18—H18A0.9600
C3—C41.4680 (18)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.4017 (19)C19—H19A0.9600
C4—C91.4092 (18)C19—H19B0.9600
C5—C61.3954 (19)C19—H19C0.9600
C6—C71.3642 (19)
C8—O4—C16106.10 (10)O8—C11—C10115.53 (11)
C7—O5—C16106.10 (10)C12—C11—C10121.51 (12)
C15—O6—C17117.41 (10)C13—C12—C11118.22 (12)
C13—O7—C18117.45 (11)C13—C12—H12A120.9
C11—O8—C19116.76 (10)C11—C12—H12A120.9
O2—N1—O3123.06 (12)O7—C13—C12123.09 (12)
O2—N1—C5117.74 (11)O7—C13—C14114.85 (12)
O3—N1—C5119.18 (11)C12—C13—C14122.06 (12)
O1—C1—C2119.91 (12)C15—C14—C13118.46 (12)
O1—C1—C10120.19 (11)C15—C14—H14A120.8
C2—C1—C10119.86 (11)C13—C14—H14A120.8
C3—C2—C1123.32 (12)O6—C15—C14124.12 (12)
C3—C2—H2A118.3O6—C15—C10114.43 (11)
C1—C2—H2A118.3C14—C15—C10121.42 (12)
C2—C3—C4124.64 (12)O5—C16—O4107.78 (10)
C2—C3—H3A117.7O5—C16—H16A110.1
C4—C3—H3A117.7O4—C16—H16A110.1
C5—C4—C9117.26 (12)O5—C16—H16B110.1
C5—C4—C3123.70 (12)O4—C16—H16B110.1
C9—C4—C3118.94 (12)H16A—C16—H16B108.5
C6—C5—C4124.53 (12)O6—C17—H17A109.5
C6—C5—N1115.44 (11)O6—C17—H17B109.5
C4—C5—N1120.02 (12)H17A—C17—H17B109.5
C7—C6—C5115.53 (12)O6—C17—H17C109.5
C7—C6—H6A122.2H17A—C17—H17C109.5
C5—C6—H6A122.2H17B—C17—H17C109.5
C6—C7—O5127.98 (12)O7—C18—H18A109.5
C6—C7—C8121.86 (12)O7—C18—H18B109.5
O5—C7—C8110.16 (12)H18A—C18—H18B109.5
O4—C8—C9127.62 (12)O7—C18—H18C109.5
O4—C8—C7109.79 (12)H18A—C18—H18C109.5
C9—C8—C7122.58 (12)H18B—C18—H18C109.5
C8—C9—C4118.24 (12)O8—C19—H19A109.5
C8—C9—H9A120.9O8—C19—H19B109.5
C4—C9—H9A120.9H19A—C19—H19B109.5
C11—C10—C15118.31 (12)O8—C19—H19C109.5
C11—C10—C1122.38 (11)H19A—C19—H19C109.5
C15—C10—C1119.26 (11)H19B—C19—H19C109.5
O8—C11—C12122.95 (12)
O1—C1—C2—C3171.07 (12)O1—C1—C10—C11114.47 (14)
C10—C1—C2—C36.82 (19)C2—C1—C10—C1167.64 (16)
C1—C2—C3—C4175.54 (12)O1—C1—C10—C1562.88 (17)
C2—C3—C4—C5153.75 (13)C2—C1—C10—C15115.00 (13)
C2—C3—C4—C929.9 (2)C19—O8—C11—C124.76 (18)
C9—C4—C5—C60.4 (2)C19—O8—C11—C10176.43 (11)
C3—C4—C5—C6176.01 (12)C15—C10—C11—O8179.48 (11)
C9—C4—C5—N1178.47 (12)C1—C10—C11—O82.09 (18)
C3—C4—C5—N15.2 (2)C15—C10—C11—C120.65 (19)
O2—N1—C5—C631.32 (18)C1—C10—C11—C12176.73 (12)
O3—N1—C5—C6146.93 (13)O8—C11—C12—C13177.98 (11)
O2—N1—C5—C4149.75 (14)C10—C11—C12—C130.76 (19)
O3—N1—C5—C432.00 (19)C18—O7—C13—C1211.05 (19)
C4—C5—C6—C70.4 (2)C18—O7—C13—C14168.92 (12)
N1—C5—C6—C7178.43 (11)C11—C12—C13—O7178.33 (12)
C5—C6—C7—O5179.77 (13)C11—C12—C13—C141.7 (2)
C5—C6—C7—C80.2 (2)O7—C13—C14—C15178.85 (11)
C16—O5—C7—C6179.08 (14)C12—C13—C14—C151.19 (19)
C16—O5—C7—C80.93 (15)C17—O6—C15—C1411.24 (17)
C16—O4—C8—C9178.84 (14)C17—O6—C15—C10166.67 (11)
C16—O4—C8—C71.85 (16)C13—C14—C15—O6177.46 (11)
C6—C7—C8—O4179.39 (13)C13—C14—C15—C100.30 (19)
O5—C7—C8—O40.60 (17)C11—C10—C15—O6176.77 (10)
C6—C7—C8—C90.0 (2)C1—C10—C15—O65.76 (17)
O5—C7—C8—C9179.95 (13)C11—C10—C15—C141.19 (19)
O4—C8—C9—C4179.36 (13)C1—C10—C15—C14176.27 (11)
C7—C8—C9—C40.1 (2)C7—O5—C16—O42.04 (15)
C5—C4—C9—C80.05 (19)C8—O4—C16—O52.40 (16)
C3—C4—C9—C8176.50 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.553.4512 (16)164
C6—H6A···O6ii0.932.363.2429 (16)158
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H17NO8
Mr387.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3044 (1), 10.1264 (1), 12.8600 (2)
α, β, γ (°)93.112 (1), 103.959 (1), 105.384 (1)
V3)882.91 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4805, 3038, 2733
Rint0.013
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.04
No. of reflections3038
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.553.4512 (16)164.4
C6—H6A···O6ii0.932.363.2429 (16)158.0
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com. Thomson Reuters Researcher ID: A-5471-2009.

Acknowledgements

We thank the University of Isfahan and the University of Malaya for supporting this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationKo, H. H., Taso, L. T., Yu, K. L., Liu, C. T., Wang, J. P. & Lon, C. N. (2003). Bioorg. Med. Chem. 11, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLawrence, N. J., Patterson, R. P., Ooi, L.-L., Cook, D. & Ducki, S. (2006). Bioorg. Med. Chem. 16, 5844–5848.  CrossRef CAS Google Scholar
First citationLiu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, o445–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNielsen, A. T. & Houlihan, W. J. (1968). Org. React. 16, 1–10.  Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds