organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bipyridinium 1,4-phenyl­ene­di­acetate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenziluczl@yahoo.co.uk

(Received 30 August 2009; accepted 11 September 2009; online 19 September 2009)

The title compound, C10H10N22+·C10H8O42−, has inversion centres located at the geometric centres of the 1,4-phenyl­enediacetate anion and 4,4′-bipyridinium cation. The anions and cations are connected by N—H⋯O hydrogen bonds, forming one-dimensional supra­molecular chains, which inter­act with each other via ππ inter­actions [centroid–centroid distance = 3.938 (2) Å], building a two-dimensional supra­molecular sheet.

Related literature

For related complexes of 1,4-phenyl­enediacetic acid, see: Braverman & LaDuca (2007[Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2343-2351.]); Soares-Santos et al. (2008[Soares-Santos, P. C. R., Cunha-Silva, L., Almeida Paz, F. A., Sá Ferreira, R. A., Rocha, J., Trindade, T., Carlos, L. D. & Nogueira, H. I. S. (2008). Cryst. Growth Des. 8, 2505-2516.]); Liu et al. (2009[Liu, T., Lü, J., Shi, L., Guo, Z. & Cao, R. (2009). CrystEngComm, 11, 583-588.]); Chen et al. (2006a[Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006a). Acta Cryst. C62, m48-m50.],b[Chen, Z.-L., Zhang, Y.-Z., Liang, F.-P. & Wu, Q. (2006b). Acta Cryst. E62, m2409-m2411.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N22+·C10H8O42−

  • Mr = 350.36

  • Triclinic, [P \overline 1]

  • a = 4.579 (3) Å

  • b = 6.950 (5) Å

  • c = 13.859 (10) Å

  • α = 99.618 (9)°

  • β = 93.672 (9)°

  • γ = 97.373 (8)°

  • V = 429.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.983

  • 2241 measured reflections

  • 1499 independent reflections

  • 1052 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.193

  • S = 1.07

  • 1499 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.75 2.613 (3) 176

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The flexible ligand of 1,4-phenylenediacetate is drawing much interest in constructing metal–organic framework or supramolecular molecules due to its flexibility and its multifunctional groups of carboxylato group and phenyl ring (Braverman & LaDuca 2007; Soares-Santos et al., 2008; Liu et al., 2009; Chen et al., 2006a,b). We thus report here a supramolecular structrure formed by 4,4'-bipyridine and 1,4-phenylenediacetic acid. The title compound 4,4'-bipyridinium 1,4-phenylenediacetate (Fig. 1), [C10H10N2][C10H8O4], has inversion centres located on the geometric centres of the 1,4-phenylenediacetate anion and 4,4'-bipyridinium cation. Each 4,4'-bipyridinium cation connects two 1,4-phenylenediacetate anions via N—H···O hydrogen bonds (Table 1), and vice versa. This leads to the formation of one dimensional supramolecular chains as shown in Fig. 2. The neighboring pyridyl rings from the adjacent one chains parallel to each other with perpendicular distance of 3.5654 (4) Å, a centre-to-centre distance of 3.938 (2) Å and an off-set angle of 25.135 (7)°. These information suggest the existence of significant π···π stacking interaction between the two pyridyl rings, which results in the construction of two dimensional supramolecular sheets (Fig. 2) from the one dimensional chains.

Related literature top

For related complexes of 1,4-phenylenediacetic acid, see: Braverman & LaDuca (2007); Soares-Santos et al. (2008); Liu et al. (2009); Chen et al. (2006a,b).

Experimental top

A mixture of 1,4-phenylenediacetic acid (0.0584 g, 0.3 mmol), 4,4'-bipyridine (0.0312 g, 0.2 mmol), Mn(CH3COO)2.4H2O (0.0735 g, 0.3 mmol) and ethanol (2 ml) was sealed in a 23 ml Teflon-lined autoclave, heated at 140 °C for 4 d and cooled over a period of 48 h. Colorless crystals of the title compound were collected in a yield of 60% (0.0802 g). Found: C, 68.26; H, 5.40; N, 7.28. C20H18N2O4 requires C, 68.56; H, 5.18; N, 7.52%.

Refinement top

H atoms on the carbon and nitrogen atoms were placed at calculated positions (C–H = 0.93 Å and N–H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% displacement ellipsoids.
[Figure 2] Fig. 2. A view of the two-dimensional supramolecular sheet assembled by hydrogen bonds and π···π stacking interactions.
4,4'-Bipyridinium 1,4-phenylenediacetate top
Crystal data top
C10H10N22+·C10H8O42Z = 1
Mr = 350.36F(000) = 184
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.579 (3) ÅCell parameters from 736 reflections
b = 6.950 (5) Åθ = 3.0–23.8°
c = 13.859 (10) ŵ = 0.10 mm1
α = 99.618 (9)°T = 296 K
β = 93.672 (9)°Block, colourless
γ = 97.373 (8)°0.25 × 0.20 × 0.18 mm
V = 429.6 (5) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
1499 independent reflections
Radiation source: fine-focus sealed tube1052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 55
Tmin = 0.977, Tmax = 0.983k = 87
2241 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.1429P]
where P = (Fo2 + 2Fc2)/3
1499 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H10N22+·C10H8O42γ = 97.373 (8)°
Mr = 350.36V = 429.6 (5) Å3
Triclinic, P1Z = 1
a = 4.579 (3) ÅMo Kα radiation
b = 6.950 (5) ŵ = 0.10 mm1
c = 13.859 (10) ÅT = 296 K
α = 99.618 (9)°0.25 × 0.20 × 0.18 mm
β = 93.672 (9)°
Data collection top
Bruker SMART CCD area detector
diffractometer
1499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1052 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.014
2241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.07Δρmax = 0.41 e Å3
1499 reflectionsΔρmin = 0.25 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.6746 (5)0.5442 (3)0.19005 (15)0.0691 (7)
O10.7402 (6)0.3340 (3)0.28869 (16)0.0812 (8)
N10.3813 (5)0.7303 (4)0.32281 (18)0.0628 (7)
H10.47340.66450.27940.075*
C80.0807 (6)0.9428 (4)0.46281 (19)0.0511 (7)
C40.6539 (6)0.0571 (4)0.0761 (2)0.0568 (8)
H40.75720.09770.12730.068*
C50.4446 (7)0.1901 (4)0.0152 (2)0.0583 (8)
H50.40780.31910.02620.070*
C30.7125 (6)0.1349 (4)0.06220 (19)0.0522 (7)
C70.1869 (7)0.7720 (4)0.4784 (2)0.0644 (8)
H70.15950.72550.53670.077*
C90.1311 (8)1.0030 (5)0.3742 (2)0.0709 (9)
H90.06321.11630.35970.085*
C60.3343 (7)0.6709 (4)0.4066 (2)0.0689 (9)
H60.40320.55580.41790.083*
C20.9333 (7)0.2827 (5)0.1320 (2)0.0642 (8)
H2A1.08040.21500.16060.077*
H2B1.03380.37650.09630.077*
C10.7762 (6)0.3900 (4)0.2123 (2)0.0524 (7)
C100.2832 (7)0.8930 (5)0.3077 (2)0.0739 (10)
H100.31820.93650.24900.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0924 (16)0.0590 (13)0.0641 (14)0.0268 (11)0.0119 (11)0.0198 (10)
O10.119 (2)0.0764 (15)0.0619 (14)0.0402 (14)0.0238 (13)0.0264 (12)
N10.0687 (16)0.0644 (16)0.0565 (15)0.0193 (12)0.0133 (12)0.0033 (12)
C80.0531 (16)0.0494 (15)0.0509 (16)0.0097 (12)0.0035 (12)0.0074 (12)
C40.0694 (18)0.0581 (17)0.0498 (16)0.0235 (14)0.0140 (14)0.0151 (13)
C50.0774 (19)0.0476 (16)0.0568 (17)0.0191 (14)0.0214 (15)0.0157 (13)
C30.0563 (16)0.0547 (16)0.0487 (15)0.0168 (13)0.0214 (12)0.0049 (12)
C70.085 (2)0.0583 (18)0.0566 (18)0.0252 (15)0.0140 (15)0.0156 (14)
C90.094 (2)0.066 (2)0.066 (2)0.0364 (17)0.0240 (17)0.0240 (15)
C60.092 (2)0.0569 (18)0.065 (2)0.0303 (17)0.0141 (17)0.0125 (15)
C20.0603 (17)0.0675 (19)0.0650 (19)0.0138 (15)0.0152 (14)0.0048 (15)
C10.0589 (16)0.0480 (15)0.0503 (16)0.0081 (13)0.0052 (13)0.0081 (12)
C100.095 (2)0.076 (2)0.063 (2)0.0354 (19)0.0246 (18)0.0229 (16)
Geometric parameters (Å, º) top
O2—C11.296 (3)C5—H50.9300
O1—C11.202 (3)C3—C5ii1.388 (4)
N1—C101.312 (4)C3—C21.513 (4)
N1—C61.317 (4)C7—C61.383 (4)
N1—H10.8600C7—H70.9300
C8—C71.383 (4)C9—C101.379 (4)
C8—C91.386 (4)C9—H90.9300
C8—C8i1.488 (5)C6—H60.9300
C4—C31.375 (4)C2—C11.508 (4)
C4—C51.375 (4)C2—H2A0.9700
C4—H40.9300C2—H2B0.9700
C5—C3ii1.388 (4)C10—H100.9300
C10—N1—C6117.9 (3)C10—C9—C8119.3 (3)
C10—N1—H1121.0C10—C9—H9120.4
C6—N1—H1121.0C8—C9—H9120.4
C7—C8—C9116.8 (3)N1—C6—C7122.9 (3)
C7—C8—C8i122.0 (3)N1—C6—H6118.5
C9—C8—C8i121.3 (3)C7—C6—H6118.5
C3—C4—C5120.9 (3)C1—C2—C3109.8 (2)
C3—C4—H4119.5C1—C2—H2A109.7
C5—C4—H4119.5C3—C2—H2A109.7
C4—C5—C3ii121.1 (3)C1—C2—H2B109.7
C4—C5—H5119.5C3—C2—H2B109.7
C3ii—C5—H5119.5H2A—C2—H2B108.2
C4—C3—C5ii118.0 (3)O1—C1—O2123.0 (3)
C4—C3—C2120.7 (3)O1—C1—C2123.0 (3)
C5ii—C3—C2121.3 (3)O2—C1—C2113.9 (3)
C8—C7—C6119.6 (3)N1—C10—C9123.5 (3)
C8—C7—H7120.2N1—C10—H10118.3
C6—C7—H7120.2C9—C10—H10118.3
C3—C4—C5—C3ii0.3 (4)C8—C7—C6—N10.4 (5)
C5—C4—C3—C5ii0.3 (4)C4—C3—C2—C192.6 (3)
C5—C4—C3—C2177.3 (2)C5ii—C3—C2—C185.0 (3)
C9—C8—C7—C60.2 (5)C3—C2—C1—O190.7 (4)
C8i—C8—C7—C6179.7 (3)C3—C2—C1—O287.0 (3)
C7—C8—C9—C100.5 (5)C6—N1—C10—C90.8 (5)
C8i—C8—C9—C10179.6 (3)C8—C9—C10—N11.0 (6)
C10—N1—C6—C70.1 (5)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.752.613 (3)176

Experimental details

Crystal data
Chemical formulaC10H10N22+·C10H8O42
Mr350.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.579 (3), 6.950 (5), 13.859 (10)
α, β, γ (°)99.618 (9), 93.672 (9), 97.373 (8)
V3)429.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
2241, 1499, 1052
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.193, 1.07
No. of reflections1499
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.752.613 (3)176.4
 

Acknowledgements

The authors are grateful for financial support from the Guangxi Natural Science Foundation (grant No. 0991008) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, China (grant No. [2006]331).

References

First citationBraverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2343–2351.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006a). Acta Cryst. C62, m48–m50.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, Z.-L., Zhang, Y.-Z., Liang, F.-P. & Wu, Q. (2006b). Acta Cryst. E62, m2409–m2411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, T., Lü, J., Shi, L., Guo, Z. & Cao, R. (2009). CrystEngComm, 11, 583–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoares-Santos, P. C. R., Cunha-Silva, L., Almeida Paz, F. A., Sá Ferreira, R. A., Rocha, J., Trindade, T., Carlos, L. D. & Nogueira, H. I. S. (2008). Cryst. Growth Des. 8, 2505–2516.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds