metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Methyl­piperidin-1-ylcarbon­yl)pyridinium hexa­chlorido­antimonate(V)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wsp1314@126.com

(Received 6 August 2009; accepted 10 September 2009; online 16 September 2009)

In the hexa­chlorido­animonate anion of the title compound, (C12H17N2O)[SbCl6], the Sb5+ion is in a slightly distorted octa­hedral coordination. In the 4-(2-methyl­piperidine-1-carbon­yl) pyridinium cation, the dihedral angle between the mean planes of the pyridine and piperzine rings is 66.3 (3)°. The mean plane of the carbonyl group is twisted by 80.5 (7)° and 42.7 (4)° relative to the mean planes of the pyridine and piperzine rings, respectively. The methyl group is in an R configuration relative to the piperidine ring which is in a slightly distorted chair conformation. The crystal packing is stabilized by N—H⋯O hydrogen bonds between cations, which form infinite zigzag chains parallel to [010].

Related literature

For the use of halogenidoanti­monate salts in the study of phase transitions in dielectric–ferroelectric materials, see: Jakubas et al. (2005[Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Hołderna-Natkaniec, K., Zieliński, P. & Gała˛zka, M. (2005). Solid State Sci. 7, 381-390.]); Bednarska-Bolek et al. (2000[Bednarska-Bolek, B., Pietraszko, A., Jakubas, R., Bator, G. & Kosturek, B. (2000). J. Phys. Condens. Mat. 12, 1143-1159.]). For related structures, see: Chen (2009[Chen, L. Z. (2009). Acta Cryst. E65, m689.]); Clemente & Marzotto (2003[Clemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43-50.]); Kulicka et al. (2006[Kulicka, B., Jakubas, R., Pietraszko, A., Medycki, W. & Świergiel, J. (2006). J. Mol. Struct. 783, 88-95.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H17N2O)[SbCl6]

  • Mr = 539.73

  • Monoclinic, P 21 /n

  • a = 8.1067 (16) Å

  • b = 12.700 (3) Å

  • c = 19.677 (4) Å

  • β = 99.06 (3)°

  • V = 2000.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.638, Tmax = 0.646

  • 17300 measured reflections

  • 3918 independent reflections

  • 2731 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.178

  • S = 1.06

  • 3918 reflections

  • 199 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.86 1.87 2.689 (9) 159
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Halogenidoantimonate salts are used to study phase transitions in dielectric-ferroelectric materials (Jakubas et al., 2005; Bednarska-Bolek et al., 2000). In support of this work, crystal structures of pyridinium hexachloridoantimonate, (Clemente & Marzotto, 2003),4-aminopyridinium hexachloridoantimonate (Kulicka et al., 2006) and diisonicotinium pentachloridoantimonate monohydrate (Chen, 2009) have beenreported. In continuation of our studies on halogenoantimonate salts, we report the crystal structure of the title compound, C12H17N2O+. SbCl6-, (I).

In the cation (4-(2-methylpiperidine-1-carbonyl) pyridinium), the pyridine N atom is protonated. The piperidine ring (N2/C7—C11) adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.564 (4) Å, 177.0 (6)° and 177.084 (5)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The mean plane of the carbonyl group is twisted relative to the mean planes of the pyridine and piperzine rngs by 80.5 (7)° and 42.7 (4)°, respectively. The dihedral angle between the mean planes of pyridine and piperzine rings is 66.3 (3)°. In the anion the Sb atom is hexacoordinated with Cl atoms in a slightly distorted octahedral conformation. The Sb—Cl bond lengths (2.330 (3) to 2.348 (3) Å) are similar to that observed in pyridinium hexachlorido-antimony(V) (2.32 (1)–2.35 (5) Å; Clemente & Marzotto, 2003) and slightly shorter than that reported for 4-aminopyridinium hexachloridoantimonate (2.3608 (8)–2.3912 (7) Å; Kulicka et al.,2006). Crystal packing is stabilized by N1–H1B···O1 hydrogen bonds between cations which form infinite zigzag chains parallel to [010] (Fig. 2).

Related literature top

For the use of halogenidoantimonate salts in the study of phase transitions in dielectric–ferroelectric materials, see: Jakubas et al. (2005); Bednarska-Bolek et al. (2000). For related structures, see: Chen (2009); Clemente & Marzotto (2003); Kulicka et al. (2006). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 4-(2-methylpiperidine-1-carbonyl)pyridine(1 mmol), SbCl5 (1 mmol), ethanol(8 ml) and a few drops of HCl (6 mol/L) was stirred in a beaker. There were many solid powders produced and the solution was filtered. Colorless single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvents over a period of 48 h.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, Dashed lines indicate N–H···O hydrogen bonds which form infinite, one-dimensional chains along the (011) plane of the unit cell.
4-(2-Methylpiperidin-1-ylcarbonyl)pyridinium hexachloridoantimonate(V) top
Crystal data top
(C12H17N2O)[SbCl6]F(000) = 1056
Mr = 539.73Dx = 1.792 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7472 reflections
a = 8.1067 (16) Åθ = 3.0–27.7°
b = 12.700 (3) ŵ = 2.18 mm1
c = 19.677 (4) ÅT = 298 K
β = 99.06 (3)°Prism, colourless
V = 2000.6 (7) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3918 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.638, Tmax = 0.646l = 2424
17300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0594P)2 + 10.7201P]
where P = (Fo2 + 2Fc2)/3
3918 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 1.08 e Å3
8 restraintsΔρmin = 0.82 e Å3
Crystal data top
(C12H17N2O)[SbCl6]V = 2000.6 (7) Å3
Mr = 539.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1067 (16) ŵ = 2.18 mm1
b = 12.700 (3) ÅT = 298 K
c = 19.677 (4) Å0.20 × 0.20 × 0.20 mm
β = 99.06 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3918 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2731 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.646Rint = 0.065
17300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0728 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0594P)2 + 10.7201P]
where P = (Fo2 + 2Fc2)/3
3918 reflectionsΔρmax = 1.08 e Å3
199 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5950 (13)0.2859 (8)0.2451 (5)0.092 (3)
H1A0.52930.24340.26850.110*
C20.6745 (15)0.3710 (9)0.2774 (6)0.107 (4)
H2A0.66250.38680.32260.129*
C30.7859 (12)0.4104 (8)0.1821 (6)0.089 (3)
H3A0.85340.45410.16040.107*
C40.7082 (13)0.3263 (7)0.1474 (5)0.076 (3)
H4A0.72210.31280.10220.091*
C50.6107 (9)0.2626 (6)0.1797 (4)0.0474 (18)
C60.5366 (10)0.1615 (6)0.1476 (4)0.055 (2)
C70.2968 (10)0.2610 (6)0.0863 (6)0.067 (3)
H7A0.35720.32190.10690.080*
H7B0.27760.27040.03680.080*
C80.1374 (15)0.2526 (9)0.1110 (6)0.094 (3)
H8A0.06910.31330.09550.113*
H8B0.15660.25310.16100.113*
C90.0415 (15)0.1501 (9)0.0851 (7)0.102 (4)
H9A0.05810.14340.10640.123*
H9B0.00740.15380.03560.123*
C100.1563 (13)0.0526 (8)0.1035 (5)0.084 (3)
H10A0.18100.04460.15300.100*
H10B0.09980.01050.08430.100*
C110.3164 (11)0.0675 (7)0.0745 (5)0.068 (3)
H11A0.39060.00870.09060.081*
C120.2905 (13)0.0667 (7)0.0031 (5)0.079 (3)
H12A0.39570.07750.01870.119*
H12B0.21480.12210.02040.119*
H12C0.24460.00010.01960.119*
Cl10.3262 (6)0.7906 (3)0.19673 (17)0.1303 (14)
Cl20.3231 (4)0.7842 (2)0.03045 (15)0.0970 (9)
Cl30.0105 (4)0.6753 (4)0.0955 (2)0.1479 (18)
Cl40.2771 (8)0.5277 (3)0.19805 (19)0.192 (3)
Cl50.5929 (5)0.6406 (5)0.1308 (3)0.199 (3)
Cl60.2773 (6)0.5279 (2)0.02829 (18)0.1324 (15)
N10.7664 (10)0.4296 (6)0.2450 (5)0.075 (2)
H1B0.81620.48310.26580.091*
N20.3972 (9)0.1656 (5)0.1039 (4)0.0623 (19)
O10.6169 (8)0.0811 (5)0.1647 (4)0.082 (2)
Sb10.30206 (7)0.65548 (4)0.11435 (3)0.0571 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.122 (9)0.096 (8)0.059 (6)0.040 (7)0.024 (6)0.011 (6)
C20.165 (13)0.102 (9)0.048 (6)0.028 (9)0.004 (7)0.014 (6)
C30.089 (8)0.075 (7)0.110 (9)0.023 (6)0.036 (7)0.017 (6)
C40.105 (8)0.055 (6)0.074 (6)0.022 (5)0.035 (6)0.021 (5)
C50.047 (4)0.050 (4)0.040 (4)0.001 (3)0.008 (3)0.004 (3)
C60.056 (5)0.044 (4)0.059 (5)0.005 (4)0.010 (4)0.005 (4)
C70.048 (5)0.036 (4)0.110 (7)0.007 (4)0.008 (5)0.001 (4)
C80.095 (9)0.093 (8)0.091 (8)0.013 (7)0.003 (6)0.014 (6)
C90.083 (8)0.107 (10)0.121 (10)0.009 (7)0.030 (7)0.004 (8)
C100.094 (8)0.078 (7)0.076 (7)0.011 (6)0.003 (6)0.005 (5)
C110.068 (6)0.046 (5)0.080 (6)0.011 (4)0.015 (5)0.006 (4)
C120.082 (7)0.059 (6)0.093 (8)0.001 (5)0.004 (6)0.015 (5)
Cl10.184 (4)0.121 (3)0.083 (2)0.041 (3)0.011 (2)0.042 (2)
Cl20.147 (3)0.0595 (15)0.0860 (19)0.0035 (16)0.0231 (18)0.0139 (13)
Cl30.0633 (18)0.239 (5)0.145 (3)0.026 (2)0.0295 (19)0.056 (3)
Cl40.368 (8)0.126 (3)0.080 (2)0.056 (4)0.026 (3)0.043 (2)
Cl50.076 (2)0.262 (6)0.243 (6)0.065 (3)0.019 (3)0.038 (5)
Cl60.251 (5)0.0584 (17)0.102 (2)0.001 (2)0.069 (3)0.0125 (16)
N10.069 (5)0.056 (5)0.091 (6)0.011 (4)0.020 (5)0.017 (4)
N20.056 (4)0.035 (3)0.087 (5)0.000 (3)0.018 (4)0.002 (3)
O10.086 (5)0.050 (4)0.095 (5)0.009 (3)0.032 (4)0.012 (3)
Sb10.0608 (4)0.0543 (4)0.0552 (4)0.0006 (3)0.0061 (2)0.0038 (3)
Geometric parameters (Å, º) top
C1—C51.347 (12)C9—C101.557 (15)
C1—C21.364 (15)C9—H9A0.9700
C1—H1A0.9300C9—H9B0.9700
C2—N11.291 (15)C10—C111.509 (14)
C2—H2A0.9300C10—H10A0.9700
C3—N11.295 (13)C10—H10B0.9700
C3—C41.367 (13)C11—N21.481 (10)
C3—H3A0.9300C11—C121.508 (13)
C4—C51.355 (11)C11—H11A0.9800
C4—H4A0.9300C12—H12A0.9600
C5—C61.514 (10)C12—H12B0.9600
C6—O11.229 (9)C12—H12C0.9600
C6—N21.309 (10)Cl1—Sb12.347 (3)
C7—C81.455 (14)Cl2—Sb12.348 (3)
C7—N21.470 (9)Cl3—Sb12.348 (3)
C7—H7A0.9700Cl4—Sb12.343 (3)
C7—H7B0.9700Cl5—Sb12.336 (4)
C8—C91.560 (15)Cl6—Sb12.330 (3)
C8—H8A0.9700N1—H1B0.8600
C8—H8B0.9700
C5—C1—C2120.7 (10)C9—C10—H10A109.8
C5—C1—H1A119.6C11—C10—H10B109.8
C2—C1—H1A119.6C9—C10—H10B109.8
N1—C2—C1119.6 (10)H10A—C10—H10B108.3
N1—C2—H2A120.2N2—C11—C12112.6 (8)
C1—C2—H2A120.2N2—C11—C10108.1 (8)
N1—C3—C4120.6 (10)C12—C11—C10113.0 (8)
N1—C3—H3A119.7N2—C11—H11A107.6
C4—C3—H3A119.7C12—C11—H11A107.6
C5—C4—C3119.3 (9)C10—C11—H11A107.6
C5—C4—H4A120.4C11—C12—H12A109.5
C3—C4—H4A120.4C11—C12—H12B109.5
C1—C5—C4117.8 (8)H12A—C12—H12B109.5
C1—C5—C6119.6 (8)C11—C12—H12C109.5
C4—C5—C6122.2 (7)H12A—C12—H12C109.5
O1—C6—N2125.3 (7)H12B—C12—H12C109.5
O1—C6—C5115.6 (7)C2—N1—C3122.1 (9)
N2—C6—C5119.0 (6)C2—N1—H1B119.0
C8—C7—N2110.4 (8)C3—N1—H1B119.0
C8—C7—H7A109.6C6—N2—C7125.2 (7)
N2—C7—H7A109.6C6—N2—C11120.4 (6)
C8—C7—H7B109.6C7—N2—C11114.0 (6)
N2—C7—H7B109.6Cl6—Sb1—Cl590.8 (2)
H7A—C7—H7B108.1Cl6—Sb1—Cl491.26 (14)
C7—C8—C9112.0 (9)Cl5—Sb1—Cl492.5 (2)
C7—C8—H8A109.2Cl6—Sb1—Cl1177.11 (13)
C9—C8—H8A109.2Cl5—Sb1—Cl189.5 (2)
C7—C8—H8B109.2Cl4—Sb1—Cl191.60 (16)
C9—C8—H8B109.2Cl6—Sb1—Cl389.46 (16)
H8A—C8—H8B107.9Cl5—Sb1—Cl3178.1 (2)
C10—C9—C8109.8 (10)Cl4—Sb1—Cl389.4 (2)
C10—C9—H9A109.7Cl1—Sb1—Cl390.17 (15)
C8—C9—H9A109.7Cl6—Sb1—Cl288.89 (11)
C10—C9—H9B109.7Cl5—Sb1—Cl288.32 (18)
C8—C9—H9B109.7Cl4—Sb1—Cl2179.19 (19)
H9A—C9—H9B108.2Cl1—Sb1—Cl288.24 (13)
C11—C10—C9109.3 (9)Cl3—Sb1—Cl289.84 (16)
C11—C10—H10A109.8
C5—C1—C2—N10.4 (11)C9—C10—C11—C1266.8 (11)
N1—C3—C4—C50.3 (14)C1—C2—N1—C30.1 (13)
C2—C1—C5—C40.3 (13)C4—C3—N1—C20.2 (15)
C2—C1—C5—C6173.5 (7)O1—C6—N2—C7176.7 (9)
C3—C4—C5—C10.1 (14)C5—C6—N2—C74.7 (14)
C3—C4—C5—C6173.0 (8)O1—C6—N2—C114.7 (15)
C1—C5—C6—O177.7 (11)C5—C6—N2—C11176.7 (8)
C4—C5—C6—O195.2 (11)C8—C7—N2—C6112.8 (10)
C1—C5—C6—N2103.5 (10)C8—C7—N2—C1159.6 (11)
C4—C5—C6—N283.6 (12)C12—C11—N2—C6123.4 (10)
N2—C7—C8—C953.9 (12)C10—C11—N2—C6111.1 (10)
C7—C8—C9—C1053.4 (13)C12—C11—N2—C763.8 (11)
C8—C9—C10—C1155.2 (12)C10—C11—N2—C761.8 (11)
C9—C10—C11—N258.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.861.872.689 (9)159
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C12H17N2O)[SbCl6]
Mr539.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.1067 (16), 12.700 (3), 19.677 (4)
β (°) 99.06 (3)
V3)2000.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.638, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
17300, 3918, 2731
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.178, 1.06
No. of reflections3918
No. of parameters199
No. of restraints8
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0594P)2 + 10.7201P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.08, 0.82

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.861.872.689 (9)159.4
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationBednarska-Bolek, B., Pietraszko, A., Jakubas, R., Bator, G. & Kosturek, B. (2000). J. Phys. Condens. Mat. 12, 1143–1159.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, L. Z. (2009). Acta Cryst. E65, m689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43–50.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationJakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Hołderna-Natkaniec, K., Zieliński, P. & Gała˛zka, M. (2005). Solid State Sci. 7, 381–390.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulicka, B., Jakubas, R., Pietraszko, A., Medycki, W. & Świergiel, J. (2006). J. Mol. Struct. 783, 88–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds