metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ2-chlorido(μ2-1,3-di-4-pyridylpropane-κ2N:N′)lead(II)]

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
*Correspondence e-mail: zyfu@scut.edu.cn

(Received 21 August 2009; accepted 7 September 2009; online 16 September 2009)

The title PbII coordination polymer, [PbCl2(C13H14N2)], was prepared by the hydro­thermal reaction of PbCl2 with 4,4,-trimethyl­enedipyridine in a 1:1 ratio. It exhibits a two-dimensional layered structural motif consisting of PbCl2 chains and the flexible bridged 4,4′-trimethyl­enedipyridine ligand. The connections result in a cavity of about 4 × 15 Å.

Related literature

For crystal engineering based upon transition metal coordination polymers, see: Abrahams et al. (1999[Abrahams, B. F., Egan, S. J. & Robson, R. (1999). J. Am. Chem. Soc. 121, 3535-3536.]). For applications of these metal-organic frameworks, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Natarajan & Mahata (2009[Natarajan, S. & Mahata, P. (2009). Chem. Soc. Rev. 38, 2304-2318.]). For networks with main group metals as connected nodes, see: Shi et al. (2002[Shi, Y. J., Li, L. H., Li, Y. Z., Xu, Y., Chen, X. T., Xue, Z. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 1090-1094.]). For the related structure, [PbCl2(4,4′-bipy)] (bipy is bipyridine), see: Nordell et al. (2004[Nordell, K. J., Schultz, K. N., Higgins, K. A. & Smith, M. D. (2004). Polyhedron, 23, 2161-2167.]).

[Scheme 1]

Experimental

Crystal data
  • [PbCl2(C13H14N2)]

  • Mr = 476.35

  • Monoclinic, P 21 /m

  • a = 4.385 (2) Å

  • b = 15.455 (3) Å

  • c = 10.935 (2) Å

  • β = 97.65 (2)°

  • V = 734.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.84 mm−1

  • T = 298 K

  • 0.19 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.139, Tmax = 0.277

  • 2401 measured reflections

  • 1283 independent reflections

  • 1109 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.077

  • S = 1.01

  • 1283 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.16 e Å−3

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering based upon transition metal coordination polymers has made rapid progress (Abrahams et al., 1999). These metal organic frameworks attracted much attention in the field of host guest chemistry (Natarajan et al., 2009), which may find applications in catalysis, nonlinear optics, magnetism, molecular recognition and separation (Moulton et al., 2001). By comparison, the networks with main group metals as connected nodes have not been well documented (Shi et al., 2002). Recently, many lead halides based coordination polymers with nitrogen-containing ligand as bridge exhibit interesting physical properties and structural motifs (Nordell et al., 2004). Different linkers, such as 4,4,-bipy, pyrazine and bipyridyl-based butadiene are introduced to the construction of lead halide organic-inorganic hybrid compounds. Here we report the hydrothermal synthesis and structural characterization of a new coordination complex based on PbCl2 inorganic unit and 4,4,-trimethylenedipyridine. Hydrothermal reaction of PbCl2 and 4,4,-trimethylenedipyridine with equimolar amounts afford block-like crystals. They were characterized by single-crystal X-ray structural analysis. Details of crystallographic data for the title compounds 1 is listed in Table 1. The structure of PbCl2(4,4,-trimethylenedipyridine) framework is a two-dimensional-layered motif constructed by the [PbCl2]n chains and the flexible bridge 4,4,-trimethylenedipyridine ligand (Fig. 1). The crystal is monoclinic, space group P21/m, with the Pb, Cl1 and Cl2 atoms lying on a crystallographic mirror plane. Each lead metal center is six-coordinate geometry with four chloride ion on the square plane and two nitrogen donors at the axial direction. The bond distances of Pb—Cl range from 2.862 (6) Å to 2.982 (6) Å. And the bond distance of Pb—N is 2.667 (7) Å. These parameters are close to previous report (Nordell et al., 2004). The bond angles of Cl—Pb—Cl at the square plane vary from 81.15 (17) to 97.21 (17)°. And the trans N1—Pb1—N1 bond angle is 166.1 (3)°. These value indicate that the lead center is situated in a distorted octahedral environment and the lone pair in Pb(II) is stereochemically active. As showed in figure 2, The [PbCl2]n chains are linked into flat sheets by the 4,4,-trimethylenedipyridine bridges. The dimensions of the distorted square cavity are approximately 4*15 Å. The flexible of the spacers make the layer into an undulating structural motif. And the sheets stack along a axis at a distance of 4.69 Å.

Related literature top

For crystal engineering based upon transition metal coordination polymers, see: Abrahams et al. (1999). For applications of these metal-organic frameworks, see: Moulton & Zaworotko (2001); Natarajan & Mahata (2009). For networks with main group metals as connected nodes, see: Shi et al. (2002). For the related structure, [PbCl2(4,4'-bipy)] (bipy is bipyridine), see: Nordell et al. (2004).

Experimental top

An aqueous mixture (10 ml) containing 4,4,-trimethylenedipyridine (0.1 g, 0.5 mmol), PbCl2 (0.139 g, 0.5 mmol) was placed in a Parr Teflonlined stainless steel vessel (25 ml), and the vessel was sealed and heated to 403.15 K for 24 h. 0.08 g block-like crystals were obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The non-hydrogen atoms were refined anisotropically. 41 low-theta reflections were omitted from the data set.

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SMART (Bruker, 1996) and SAINT (Bruker, 1996)'; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis.
Poly[di-µ2-chlorido(µ2-1,3-di-4-pyridylpropane- κ2N:N')lead(II)] top
Crystal data top
[PbCl2(C13H14N2)]F(000) = 444
Mr = 476.35Dx = 2.155 Mg m3
Monoclinic, P21/mMelting point: 533.15K K
Hall symbol: -P2ybMo Kα radiation, λ = 0.71073 Å
a = 4.385 (2) ÅCell parameters from 1283 reflections
b = 15.455 (3) Åθ = 2.6–25.0°
c = 10.935 (2) ŵ = 11.84 mm1
β = 97.65 (2)°T = 298 K
V = 734.5 (3) Å3Block, yellow
Z = 20.19 × 0.15 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
1283 independent reflections
Radiation source: fine-focus sealed tube1109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.139, Tmax = 0.277k = 1518
2401 measured reflectionsl = 712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
1283 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[PbCl2(C13H14N2)]V = 734.5 (3) Å3
Mr = 476.35Z = 2
Monoclinic, P21/mMo Kα radiation
a = 4.385 (2) ŵ = 11.84 mm1
b = 15.455 (3) ÅT = 298 K
c = 10.935 (2) Å0.19 × 0.15 × 0.11 mm
β = 97.65 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1283 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1109 reflections with I > 2σ(I)
Tmin = 0.139, Tmax = 0.277Rint = 0.033
2401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.01Δρmax = 0.88 e Å3
1283 reflectionsΔρmin = 1.16 e Å3
88 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.32077 (9)0.75000.28349 (4)0.03780 (17)
Cl20.7798 (10)0.75000.1052 (3)0.0748 (10)
Cl10.1094 (10)0.75000.4619 (3)0.0719 (10)
C50.6217 (18)0.4150 (5)0.2292 (8)0.0431 (19)
N10.3822 (16)0.5787 (4)0.2702 (7)0.0482 (17)
C20.412 (2)0.4554 (5)0.1409 (8)0.049 (2)
H2A0.34810.42780.06620.059*
C30.574 (2)0.5401 (5)0.3555 (8)0.057 (2)
H3A0.62880.56840.43030.068*
C10.297 (2)0.5358 (5)0.1631 (8)0.049 (2)
H1A0.15730.56160.10260.059*
C60.770 (2)0.3312 (5)0.2033 (9)0.055 (2)
H6A0.97110.32830.25270.066*
H6B0.80240.33020.11710.066*
C310.698 (2)0.4595 (5)0.3397 (9)0.055 (2)
H3B0.83350.43490.40300.066*
C70.584 (2)0.25000.2302 (11)0.040 (3)
H7A0.38630.25000.17830.048*
H7C0.54740.25000.31590.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0342 (2)0.0274 (2)0.0527 (3)0.0000.00873 (17)0.000
Cl20.095 (3)0.082 (2)0.047 (2)0.0000.0061 (17)0.000
Cl10.102 (3)0.065 (2)0.048 (2)0.0000.0045 (18)0.000
C50.043 (5)0.026 (4)0.066 (6)0.005 (3)0.027 (4)0.002 (4)
N10.057 (4)0.027 (3)0.062 (5)0.006 (3)0.016 (4)0.006 (3)
C20.062 (5)0.032 (4)0.052 (5)0.003 (4)0.008 (4)0.003 (4)
C30.081 (7)0.032 (4)0.056 (6)0.002 (4)0.003 (5)0.001 (4)
C10.053 (5)0.032 (4)0.059 (6)0.002 (4)0.002 (4)0.009 (4)
C60.056 (5)0.032 (4)0.083 (7)0.002 (4)0.029 (5)0.004 (4)
C310.060 (6)0.040 (4)0.066 (6)0.007 (4)0.005 (5)0.006 (4)
C70.035 (6)0.023 (5)0.064 (7)0.0000.012 (5)0.000
Geometric parameters (Å, º) top
Pb1—N1i2.667 (7)C2—C11.374 (10)
Pb1—N12.667 (7)C2—H2A0.9300
Pb1—Cl2ii2.862 (6)C3—C311.379 (11)
Pb1—Cl12.887 (5)C3—H3A0.9300
Pb1—Cl1iii2.957 (6)C1—H1A0.9300
Pb1—Cl22.982 (6)C6—C71.548 (10)
Cl2—Pb1iii2.862 (6)C6—H6A0.9700
Cl1—Pb1ii2.957 (6)C6—H6B0.9700
C5—C311.392 (12)C31—H3B0.9300
C5—C21.390 (12)C7—C6iv1.548 (10)
C5—C61.494 (11)C7—H7A0.9700
N1—C31.313 (11)C7—H7C0.9700
N1—C11.354 (11)
N1i—Pb1—N1166.1 (3)C1—C2—H2A119.8
N1i—Pb1—Cl2ii92.49 (16)C5—C2—H2A119.8
N1—Pb1—Cl2ii92.49 (16)N1—C3—C31123.2 (8)
N1i—Pb1—Cl196.69 (14)N1—C3—H3A118.4
N1—Pb1—Cl196.69 (14)C31—C3—H3A118.4
Cl2ii—Pb1—Cl184.43 (17)N1—C1—C2122.1 (7)
N1i—Pb1—Cl1iii87.32 (16)N1—C1—H1A119.0
N1—Pb1—Cl1iii87.32 (16)C2—C1—H1A119.0
Cl2ii—Pb1—Cl1iii178.36 (9)C5—C6—C7114.3 (7)
Cl1—Pb1—Cl1iii97.21 (17)C5—C6—H6A108.7
N1i—Pb1—Cl283.26 (14)C7—C6—H6A108.7
N1—Pb1—Cl283.26 (14)C5—C6—H6B108.7
Cl2ii—Pb1—Cl297.21 (17)C7—C6—H6B108.7
Cl1—Pb1—Cl2178.36 (11)H6A—C6—H6B107.6
Cl1iii—Pb1—Cl281.15 (17)C3—C31—C5120.1 (8)
Pb1iii—Cl2—Pb197.21 (17)C3—C31—H3B120.0
Pb1—Cl1—Pb1ii97.21 (17)C5—C31—H3B120.0
C31—C5—C2116.2 (7)C6—C7—C6iv108.3 (9)
C31—C5—C6122.2 (8)C6—C7—H7A110.0
C2—C5—C6121.5 (8)C6iv—C7—H7A110.0
C3—N1—C1117.9 (7)C6—C7—H7C110.0
C3—N1—Pb1118.2 (6)C6iv—C7—H7C110.0
C1—N1—Pb1121.0 (5)H7A—C7—H7C108.4
C1—C2—C5120.5 (8)
Symmetry codes: (i) x, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[PbCl2(C13H14N2)]
Mr476.35
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)4.385 (2), 15.455 (3), 10.935 (2)
β (°) 97.65 (2)
V3)734.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.84
Crystal size (mm)0.19 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.139, 0.277
No. of measured, independent and
observed [I > 2σ(I)] reflections
2401, 1283, 1109
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.01
No. of reflections1283
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 1.16

Computer programs: , SMART (Bruker, 1996) and SAINT (Bruker, 1996)', SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors thank the NNSFC (grant No. 20701014) and the SRP program of the SCUT for financial support.

References

First citationAbrahams, B. F., Egan, S. J. & Robson, R. (1999). J. Am. Chem. Soc. 121, 3535–3536.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNatarajan, S. & Mahata, P. (2009). Chem. Soc. Rev. 38, 2304–2318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNordell, K. J., Schultz, K. N., Higgins, K. A. & Smith, M. D. (2004). Polyhedron, 23, 2161–2167.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. J., Li, L. H., Li, Y. Z., Xu, Y., Chen, X. T., Xue, Z. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 1090–1094.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds