organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Benzotriazol-2-yl)-6-[(di­ethyl­amino)meth­yl]-4-methyl­phenol

aDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 8 September 2009; accepted 10 September 2009; online 16 September 2009)

In the title compound, C18H22N4O, the dihedral angle between the planes of the benzotriazol unit and the phenyl ring of the phen­oxy group is 6.4 (2)°. There is an intra­molecular O—H⋯N hydrogen bond between the phenol and benzotriazol groups.

Related literature

For background to the applications of amino­phenolate zinc compounds in the catalytic ring-opening polymerization of cyclic esters, see: Ejfler et al. (2008[Ejfler, J., Kobyłka, M., Jerzykiewicz, L. B. & Sobota, P. (2008). Dalton Trans. pp. 6556-6562.]); Williams et al. (2003[Williams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. G. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350-11359.]). For related structures: see: Li et al. (2009[Li, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m670.]); Liu et al. (2009[Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2058.]); Tsai et al. (2009[Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N4O

  • Mr = 310.40

  • Monoclinic, P 21 /c

  • a = 8.3648 (4) Å

  • b = 20.0061 (8) Å

  • c = 10.0340 (4) Å

  • β = 100.200 (2)°

  • V = 1652.62 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.45 × 0.30 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.978

  • 16312 measured reflections

  • 3887 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.01

  • 3887 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H0⋯N1 0.82 1.90 2.621 (2) 146

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, amino-phenolate zinc compounds have been attracting considerable attention, mainly due to their applications in the catalytic ring-opening polymerization of cyclic esters (Ejfler et al., 2008; Williams et al., 2003). These amino-phenolate ligands were easily prepared by Mannich condensation from secondary amine, paraformaldehyde, and 2,4-di-substituted-phenol in the refluxing condition. Moreover, in terms of coordination chemistry, the additional amino group can provide the better chelation to stabilize the transition metal or main group metal complexes. Most recently, our group has successfully synthesized and structural characterized the Pd(II) and Al(III) complexes supported from 4-methyl-2-(2H-benzotriazol-2-yl)-phenolate (BTP) ligand (Li et al., 2009; Tsai et al., 2009). Therefore, our group is interested in the synthesis and preparation of amino-phenolate ligand derived from BTP-H. Herein, we report the synthesis and crystal structure of the title compound, (I), a potential ligand for the preparations of aluminium, palladium and zinc complexes (Scheme 1).

The molecular structure of I is composed of the benzotriazol-phenolate moiety and the diethylamino functionalized group (Fig. 1). The dihedral angle between the planes of the benzotriazol unit and the phenyl ring of the phenoxy group is 6.4 (2)°. There is an intramolecular O—H0···N1 hydrogen bond between the phenol and benzotriazol groups (Tab. 1). The distance of N1···H0 is substantially shorter, than the van der Waals distance of 2.75Å for the N and H distance. It is interesting to note that the six-member ring (O/C1/C2/N2/N1/H0) formed from the O—H···N hydrogen-bond is almost coplanar with the mean deviation of 0.016 (2)Å. Beside H-bonded motif, these bond distances of benzotriazol-phenolate group are similar to those found in the crystal structure of 2-(2H-benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate (Liu et al., 2009).

Related literature top

For background to the applications of aminophenolate zinc compounds in the catalytic ring-opening polymerization of cyclic esters, see: Ejfler et al. (2008); Williams et al. (2003). For related structures: see: Li et al. (2009); Liu et al. (2009); Tsai et al. (2009).

Experimental top

The title compound I was synthesized by the following procedures (Fig. 2): to a mixture of formaldehyde (3.60 g, 120.0 mmol) and diethylamine (12.53 ml, 120.0 mmol) was added 4-methyl-2-(2H-benzotriazol-2-yl)phenol (6.75 g, 30.0 mmol). The resulting mixture was heated under reflux for 2 day and then dried under reduced pressure to yield the oil residue. The residue was extracted with ethyl acetate (3 × 150 ml) and the organic layers were dried over MgSO4. The final solution was removed the solvent under vacuum to give white solids. Yield: 7.12 g (77%). Colourless crystals were obtained from the saturated hexane solution.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93Å with Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen; 0.96Å with Uiso(H) = 1.5 Ueq(C) for CH3 group; 0.97Å with Uiso(H) = 1.2 Ueq(C) for CH2 group; O—H = 0.82Å with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The synthesis path of I.
2-(2H-benzotriazol-2-yl)-6-[(diethylamino)methyl]-4-methylphenol top
Crystal data top
C18H22N4OF(000) = 664
Mr = 310.40Dx = 1.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5834 reflections
a = 8.3648 (4) Åθ = 2.5–27.4°
b = 20.0061 (8) ŵ = 0.08 mm1
c = 10.0340 (4) ÅT = 295 K
β = 100.200 (2)°Block, colourless
V = 1652.62 (12) Å30.45 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3887 independent reflections
Radiation source: fine–focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.0°
ϕ– and ω–scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2626
Tmin = 0.972, Tmax = 0.978l = 1111
16312 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4268P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3887 reflectionsΔρmax = 0.22 e Å3
209 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0193 (16)
Crystal data top
C18H22N4OV = 1652.62 (12) Å3
Mr = 310.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3648 (4) ŵ = 0.08 mm1
b = 20.0061 (8) ÅT = 295 K
c = 10.0340 (4) Å0.45 × 0.30 × 0.28 mm
β = 100.200 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3887 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2643 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.049
16312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3887 reflectionsΔρmin = 0.19 e Å3
209 parameters
Special details top

Experimental. 1H NMR (CDCl3, ppm): δ 6.96–7.97 (6H, m, ArH), 3.83 (2H, s, –CH2NEt2), 2.64 (4H, q, –CH2CH3), 2.31 (3H, s, ArCH3), 1.08 (6H, t, –CH2CH3).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.38174 (14)0.59067 (5)0.55612 (11)0.0515 (3)
H00.42720.61870.60950.077*
N10.45310 (16)0.71135 (6)0.64977 (13)0.0428 (3)
N20.35464 (15)0.73474 (6)0.53973 (12)0.0370 (3)
N30.35122 (17)0.80050 (6)0.52295 (13)0.0431 (3)
N40.12557 (16)0.46827 (6)0.25528 (13)0.0450 (3)
C10.27977 (18)0.62176 (7)0.45473 (14)0.0372 (3)
C20.26092 (18)0.69109 (7)0.44291 (14)0.0359 (3)
C30.15528 (18)0.71937 (7)0.33526 (15)0.0387 (4)
H3B0.14420.76560.32940.046*
C40.06657 (18)0.67937 (8)0.23680 (15)0.0396 (4)
C50.08776 (18)0.61034 (8)0.24786 (15)0.0411 (4)
H5A0.02960.58310.18130.049*
C60.19162 (19)0.58095 (7)0.35372 (15)0.0389 (4)
C70.52040 (19)0.76738 (8)0.71051 (15)0.0399 (4)
C80.6352 (2)0.77626 (9)0.83005 (17)0.0519 (4)
H8A0.67830.74020.88290.062*
C90.6802 (2)0.84032 (9)0.86450 (18)0.0567 (5)
H9A0.75650.84780.94250.068*
C100.6153 (2)0.89575 (9)0.78609 (18)0.0564 (5)
H10A0.64940.93850.81430.068*
C110.5046 (2)0.88836 (8)0.67066 (18)0.0522 (4)
H11A0.46210.92500.61940.063*
C120.45687 (19)0.82249 (7)0.63192 (15)0.0399 (4)
C130.0484 (2)0.70946 (9)0.11941 (17)0.0516 (4)
H13A0.04740.75730.12800.077*
H13B0.15630.69310.11940.077*
H13C0.01470.69720.03610.077*
C140.2234 (2)0.50642 (7)0.36353 (17)0.0478 (4)
H14A0.33730.49840.36170.057*
H14B0.20140.49050.44980.057*
C150.2099 (2)0.40745 (8)0.22420 (18)0.0501 (4)
H15A0.13150.37670.17450.060*
H15B0.25860.38590.30820.060*
C160.3396 (3)0.42154 (9)0.1423 (2)0.0644 (5)
H16A0.39110.38040.12440.097*
H16B0.41900.45110.19190.097*
H16C0.29180.44210.05820.097*
C170.0343 (2)0.45337 (10)0.2867 (2)0.0622 (5)
H17A0.07130.49150.33280.075*
H17B0.02510.41560.34820.075*
C180.1594 (3)0.43745 (12)0.1629 (3)0.0840 (7)
H18D0.26190.42830.18960.126*
H18A0.12510.39900.11810.126*
H18B0.17080.47500.10230.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0601 (8)0.0407 (6)0.0447 (7)0.0052 (5)0.0154 (5)0.0021 (5)
N10.0456 (8)0.0430 (7)0.0348 (7)0.0023 (6)0.0065 (6)0.0028 (5)
N20.0374 (7)0.0373 (6)0.0339 (7)0.0030 (5)0.0000 (5)0.0027 (5)
N30.0497 (8)0.0367 (6)0.0401 (7)0.0022 (6)0.0006 (6)0.0014 (5)
N40.0456 (8)0.0400 (7)0.0465 (8)0.0009 (6)0.0003 (6)0.0097 (6)
C10.0356 (8)0.0410 (8)0.0329 (8)0.0047 (6)0.0002 (6)0.0020 (6)
C20.0343 (8)0.0407 (7)0.0310 (8)0.0017 (6)0.0015 (6)0.0056 (6)
C30.0393 (9)0.0400 (8)0.0351 (8)0.0056 (6)0.0022 (7)0.0012 (6)
C40.0345 (8)0.0500 (9)0.0326 (8)0.0037 (6)0.0017 (6)0.0009 (6)
C50.0389 (9)0.0467 (8)0.0351 (8)0.0004 (7)0.0007 (7)0.0076 (6)
C60.0378 (8)0.0396 (8)0.0378 (8)0.0023 (6)0.0030 (7)0.0047 (6)
C70.0382 (8)0.0444 (8)0.0360 (8)0.0001 (6)0.0034 (6)0.0060 (6)
C80.0514 (11)0.0586 (10)0.0408 (10)0.0004 (8)0.0052 (8)0.0057 (7)
C90.0511 (11)0.0698 (12)0.0456 (10)0.0101 (9)0.0012 (8)0.0180 (8)
C100.0595 (12)0.0536 (10)0.0560 (11)0.0137 (8)0.0103 (9)0.0167 (8)
C110.0610 (11)0.0429 (8)0.0518 (10)0.0053 (8)0.0081 (9)0.0058 (7)
C120.0392 (8)0.0433 (8)0.0366 (8)0.0012 (6)0.0053 (7)0.0052 (6)
C130.0492 (10)0.0601 (10)0.0403 (9)0.0052 (8)0.0059 (8)0.0024 (7)
C140.0519 (10)0.0415 (8)0.0449 (10)0.0034 (7)0.0056 (8)0.0070 (7)
C150.0601 (11)0.0379 (8)0.0503 (10)0.0008 (7)0.0039 (8)0.0049 (7)
C160.0789 (15)0.0567 (11)0.0610 (12)0.0135 (10)0.0216 (11)0.0026 (9)
C170.0537 (12)0.0640 (12)0.0686 (13)0.0041 (9)0.0098 (10)0.0079 (9)
C180.0543 (13)0.0847 (15)0.1061 (19)0.0137 (11)0.0048 (12)0.0191 (13)
Geometric parameters (Å, º) top
O—C11.3572 (17)C9—C101.412 (3)
O—H00.8200C9—H9A0.9300
N1—N21.3395 (16)C10—C111.357 (2)
N1—C71.3503 (19)C10—H10A0.9300
N2—N31.3259 (16)C11—C121.411 (2)
N2—C21.4323 (18)C11—H11A0.9300
N3—C121.3520 (19)C13—H13A0.9600
N4—C141.4548 (19)C13—H13B0.9600
N4—C171.458 (2)C13—H13C0.9600
N4—C151.4675 (19)C14—H14A0.9700
C1—C21.399 (2)C14—H14B0.9700
C1—C61.405 (2)C15—C161.499 (3)
C2—C31.389 (2)C15—H15A0.9700
C3—C41.381 (2)C15—H15B0.9700
C3—H3B0.9300C16—H16A0.9600
C4—C51.394 (2)C16—H16B0.9600
C4—C131.508 (2)C16—H16C0.9600
C5—C61.379 (2)C17—C181.510 (3)
C5—H5A0.9300C17—H17A0.9700
C6—C141.515 (2)C17—H17B0.9700
C7—C121.404 (2)C18—H18D0.9600
C7—C81.409 (2)C18—H18A0.9600
C8—C91.363 (2)C18—H18B0.9600
C8—H8A0.9300
C1—O—H0109.5C12—C11—H11A121.5
N2—N1—C7103.20 (12)N3—C12—C7109.07 (13)
N3—N2—N1116.59 (11)N3—C12—C11129.73 (15)
N3—N2—C2121.46 (12)C7—C12—C11121.20 (15)
N1—N2—C2121.93 (12)C4—C13—H13A109.5
N2—N3—C12102.94 (11)C4—C13—H13B109.5
C14—N4—C17111.20 (14)H13A—C13—H13B109.5
C14—N4—C15111.45 (13)C4—C13—H13C109.5
C17—N4—C15111.75 (13)H13A—C13—H13C109.5
O—C1—C2124.37 (13)H13B—C13—H13C109.5
O—C1—C6117.02 (13)N4—C14—C6113.51 (13)
C2—C1—C6118.58 (13)N4—C14—H14A108.9
C3—C2—C1121.10 (13)C6—C14—H14A108.9
C3—C2—N2118.39 (13)N4—C14—H14B108.9
C1—C2—N2120.48 (12)C6—C14—H14B108.9
C4—C3—C2120.50 (14)H14A—C14—H14B107.7
C4—C3—H3B119.8N4—C15—C16112.49 (14)
C2—C3—H3B119.8N4—C15—H15A109.1
C3—C4—C5118.18 (13)C16—C15—H15A109.1
C3—C4—C13121.00 (14)N4—C15—H15B109.1
C5—C4—C13120.81 (14)C16—C15—H15B109.1
C6—C5—C4122.51 (13)H15A—C15—H15B107.8
C6—C5—H5A118.7C15—C16—H16A109.5
C4—C5—H5A118.7C15—C16—H16B109.5
C5—C6—C1119.12 (13)H16A—C16—H16B109.5
C5—C6—C14123.30 (13)C15—C16—H16C109.5
C1—C6—C14117.50 (13)H16A—C16—H16C109.5
N1—C7—C12108.20 (13)H16B—C16—H16C109.5
N1—C7—C8130.99 (15)N4—C17—C18113.18 (17)
C12—C7—C8120.82 (14)N4—C17—H17A108.9
C9—C8—C7116.78 (16)C18—C17—H17A108.9
C9—C8—H8A121.6N4—C17—H17B108.9
C7—C8—H8A121.6C18—C17—H17B108.9
C8—C9—C10122.39 (17)H17A—C17—H17B107.8
C8—C9—H9A118.8C17—C18—H18D109.5
C10—C9—H9A118.8C17—C18—H18A109.5
C11—C10—C9121.82 (16)H18D—C18—H18A109.5
C11—C10—H10A119.1C17—C18—H18B109.5
C9—C10—H10A119.1H18D—C18—H18B109.5
C10—C11—C12116.99 (16)H18A—C18—H18B109.5
C10—C11—H11A121.5
C7—N1—N2—N30.03 (18)N2—N1—C7—C120.14 (17)
C7—N1—N2—C2178.32 (13)N2—N1—C7—C8179.45 (17)
N1—N2—N3—C120.08 (17)N1—C7—C8—C9179.60 (17)
C2—N2—N3—C12178.45 (13)C12—C7—C8—C90.1 (2)
O—C1—C2—C3179.28 (14)C7—C8—C9—C100.5 (3)
C6—C1—C2—C31.2 (2)C8—C9—C10—C110.5 (3)
O—C1—C2—N21.3 (2)C9—C10—C11—C120.1 (3)
C6—C1—C2—N2176.75 (13)N2—N3—C12—C70.16 (16)
N3—N2—C2—C35.1 (2)N2—N3—C12—C11179.77 (17)
N1—N2—C2—C3176.66 (14)N1—C7—C12—N30.20 (18)
N3—N2—C2—C1172.94 (14)C8—C7—C12—N3179.44 (15)
N1—N2—C2—C15.3 (2)N1—C7—C12—C11179.74 (15)
C1—C2—C3—C40.2 (2)C8—C7—C12—C110.6 (2)
N2—C2—C3—C4177.75 (14)C10—C11—C12—N3179.46 (17)
C2—C3—C4—C50.8 (2)C10—C11—C12—C70.6 (3)
C2—C3—C4—C13179.95 (15)C17—N4—C14—C684.24 (18)
C3—C4—C5—C60.9 (2)C15—N4—C14—C6150.36 (14)
C13—C4—C5—C6179.94 (15)C5—C6—C14—N43.9 (2)
C4—C5—C6—C10.1 (2)C1—C6—C14—N4179.50 (14)
C4—C5—C6—C14176.51 (15)C14—N4—C15—C1676.89 (18)
O—C1—C6—C5179.32 (14)C17—N4—C15—C16158.01 (16)
C2—C1—C6—C51.1 (2)C14—N4—C17—C18158.75 (16)
O—C1—C6—C142.6 (2)C15—N4—C17—C1876.0 (2)
C2—C1—C6—C14175.67 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0···N10.821.902.621 (2)146

Experimental details

Crystal data
Chemical formulaC18H22N4O
Mr310.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.3648 (4), 20.0061 (8), 10.0340 (4)
β (°) 100.200 (2)
V3)1652.62 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.30 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
16312, 3887, 2643
Rint0.049
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.01
No. of reflections3887
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0···N10.821.9022.621 (2)145.8
 

Acknowledgements

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-98-CR-CH).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjfler, J., Kobyłka, M., Jerzykiewicz, L. B. & Sobota, P. (2008). Dalton Trans. pp. 6556–6562.  Web of Science CSD CrossRef Google Scholar
First citationLi, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. G. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350–11359.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds