organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2583-o2584

5-(4-Chloro­phen­­oxy)-6-iso­propyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H)-one

aInstitute of Medicinal Chemistry, YunYang Medical College, ShiYan 442000, People's Republic of China, and bCenter of Oncology, People's Hospital affiliated with YunYang Medical College, Shi Yan 442000, People's Republic of China
*Correspondence e-mail: dengshouheng@yahoo.cn

(Received 10 September 2009; accepted 18 September 2009; online 30 September 2009)

In the title compound, C19H16ClN5O2, the triazolopyrimidine ring system is essentially planar, with a maximum displacement of 0.021 (4) Å, and forms dihedral angles of 1.09 (9) and 87.74 (9)° with the phenyl and benzene rings, respectively. Short intra­molecular C—H⋯O and C—H⋯N hydrogen-bonding inter­actions occur within the molecule. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into chains parallel to the b axis. In addition, ππ stacking inter­actions involving the triazole and pyrimidine rings of adjacent mol­ecules are observed, with centroid–centroid distances of 3.600 (3) Å.

Related literature

For the biological activity of 8-aza­guanine derivatives, see: Roblin et al. (1945[Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290-294.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Mitchell et al. (1950[Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647-649.]); Levine et al. (1963[Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (NY), 16, 269-272.]); Montgomery et al. (1962[Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504-509.]); Yamamoto et al. (1967[Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140-142.]); Bariana (1971[Bariana, D. S. (1971). J. Med. Chem. 14, 535-543.]); Holland et al. (1975[Holland, A., Jackson, D., Chaplen, P., LUNT, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447-449.]); For related structures, see: Ferguson et al. (1998[Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.]); Li et al. (2004[Li, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11-14.]); Zhao, Xie et al. (2005[Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020-1022.]); Zhao, Hu et al. (2005[Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791-o2792.]); Zhao, Wang & Ding (2005[Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439-444.]); Chen & Shi (2006[Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780-o4782.]); Maldonado et al. (2006[Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489-o491.]); Xiao & Shi (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zeng et al. (2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.], 2009[Zeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142-o1143.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16ClN5O2

  • Mr = 381.82

  • Monoclinic, C 2/c

  • a = 16.8429 (3) Å

  • b = 11.7890 (2) Å

  • c = 18.8309 (3) Å

  • β = 91.737 (2)°

  • V = 3737.36 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.26 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.978

  • 10890 measured reflections

  • 3290 independent reflections

  • 2697 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.188

  • S = 1.20

  • 3290 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2 0.98 2.16 2.679 (4) 112
C6—H6⋯N4 0.93 2.36 3.013 (4) 127
C4—H4⋯O1i 0.93 2.46 3.317 (5) 154
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing the 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, we have been engaged in the preparation of the derivatives of 8-azaguanine via aza-Wittig reaction of /b-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from /b-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone ring system are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Li et al., 2004; Maldonado et al., 2006; Zeng et al., 2006, 2009; Wang et al., 2006, 2008; Xiao et al., 2007; Chen & Shi, 2006), all ring atoms in the 1,2,3-triazolo[4,5-d]pyrimidine ring system are essentially coplanar (maximum deviation 0.021 (4) Å for atom C10), indicating that the moiety is a conjugate system. The dihedral angles it forms with the C1–C6 and C11–C16 phenyl and benzene rings are 1.09 (9) and 87.74 (9)°, respectively.

There exist two intramolecular C—H···O and C—H···N hydrogen bonding interactions (Table 1) stabilizing the molecular conformation. The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds forming chains parallel to the b axis, and by ππ stacking interactions occurring between adjacent triazole and pyrimidine rings, with centroid-to-centroid distances of 3.600 (3) Å.

Related literature top

For the biological activity of 8-azaguanine derivatives, see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975); For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao & Shi (2007); Wang et al. (2006, 2008); Zeng et al.(2006, 2009).

Experimental top

To the solution of carbodiimide in CH2Cl2/CH3CN (1:4 v/v, 15 ml) prepared according to the literature method (Zeng et al., 2006), 4-chlorophenol (3 mmol) and excess K2CO3 were added, and the reaction mixture was stirred for 12 h. The solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound (yield 92%; m.p. 459 K). Elemental analysis: calculated for C19H16ClN5O2: C, 59.77; H, 4.22; N, 18.34%. Found: C, 58.62; H, 4.48; N, 17.83%. Crystals suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of a hexane/dichloromethane (1:3 v/v) solution at room temperature.

Refinement top

H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size.
5-(4-Chlorophenoxy)-6-isopropyl-3-phenyl-3H-1,2,3- triazolo[4,5-d]pyrimidin-7(6H)-one top
Crystal data top
C19H16ClN5O2F(000) = 1584
Mr = 381.82Dx = 1.357 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2541 reflections
a = 16.8429 (3) Åθ = 2.4–22.6°
b = 11.7890 (2) ŵ = 0.23 mm1
c = 18.8309 (3) ÅT = 298 K
β = 91.737 (2)°Block, colourless
V = 3737.36 (11) Å30.26 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3290 independent reflections
Radiation source: fine-focus sealed tube2697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2019
Tmin = 0.943, Tmax = 0.978k = 1114
10890 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.064P)2 + 5.7684P]
where P = (Fo2 + 2Fc2)/3
3290 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H16ClN5O2V = 3737.36 (11) Å3
Mr = 381.82Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.8429 (3) ŵ = 0.23 mm1
b = 11.7890 (2) ÅT = 298 K
c = 18.8309 (3) Å0.26 × 0.20 × 0.10 mm
β = 91.737 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3290 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2697 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.978Rint = 0.030
10890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.20Δρmax = 0.35 e Å3
3290 reflectionsΔρmin = 0.27 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09358 (19)0.1023 (3)0.18512 (17)0.0439 (8)
C20.1566 (2)0.0468 (3)0.2139 (2)0.0642 (11)
H20.19840.08820.23190.077*
C30.1583 (3)0.0702 (3)0.2161 (2)0.0737 (12)
H30.20090.10750.23600.088*
C40.0973 (3)0.1310 (3)0.1891 (2)0.0689 (12)
H40.09820.20990.19030.083*
C50.0348 (3)0.0757 (3)0.1601 (2)0.0673 (11)
H50.00670.11750.14170.081*
C60.0322 (2)0.0415 (3)0.1578 (2)0.0560 (10)
H60.01050.07850.13790.067*
C70.06815 (19)0.4035 (3)0.17494 (18)0.0453 (8)
C80.03822 (18)0.2986 (3)0.16141 (16)0.0397 (7)
C90.0704 (2)0.3664 (3)0.11400 (18)0.0462 (8)
C100.0258 (2)0.5037 (3)0.15489 (19)0.0510 (9)
C110.16545 (19)0.2430 (3)0.06917 (19)0.0476 (8)
C120.2136 (2)0.1916 (3)0.1182 (2)0.0666 (11)
H120.22990.22990.15920.080*
C130.2380 (3)0.0818 (4)0.1064 (2)0.0727 (12)
H130.27080.04490.13960.087*
C140.2136 (2)0.0283 (3)0.0458 (2)0.0618 (11)
C150.1683 (3)0.0821 (4)0.0042 (2)0.0762 (13)
H150.15410.04540.04650.091*
C160.1431 (2)0.1920 (4)0.0077 (2)0.0687 (11)
H160.11140.22990.02600.082*
C170.1015 (2)0.5730 (3)0.1032 (2)0.0568 (10)
H170.15010.53780.08640.068*
C180.1260 (3)0.6448 (4)0.1659 (3)0.0860 (14)
H18A0.08160.68930.18040.129*
H18B0.16850.69430.15300.129*
H18C0.14360.59680.20440.129*
C190.0657 (3)0.6376 (4)0.0409 (3)0.0867 (14)
H19A0.05890.58750.00100.130*
H19B0.10050.69870.02870.130*
H19C0.01510.66780.05340.130*
Cl10.24101 (10)0.11289 (10)0.03223 (8)0.1080 (6)
N10.09221 (15)0.2236 (2)0.18491 (14)0.0435 (7)
N20.15423 (17)0.2844 (3)0.21305 (17)0.0555 (8)
N30.13910 (18)0.3917 (3)0.20656 (17)0.0562 (8)
N40.03181 (15)0.2756 (2)0.13053 (15)0.0451 (7)
N50.04809 (16)0.4770 (2)0.12434 (15)0.0470 (7)
O10.04809 (17)0.6008 (2)0.16009 (17)0.0747 (9)
O20.14044 (14)0.35551 (19)0.08206 (14)0.0595 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (18)0.0388 (19)0.0495 (19)0.0002 (15)0.0048 (15)0.0037 (15)
C20.058 (2)0.051 (2)0.084 (3)0.0023 (19)0.011 (2)0.005 (2)
C30.084 (3)0.048 (2)0.091 (3)0.017 (2)0.020 (3)0.002 (2)
C40.095 (3)0.034 (2)0.077 (3)0.002 (2)0.004 (2)0.0014 (19)
C50.073 (3)0.042 (2)0.087 (3)0.013 (2)0.003 (2)0.003 (2)
C60.053 (2)0.041 (2)0.074 (3)0.0024 (17)0.0059 (18)0.0014 (18)
C70.0420 (18)0.0389 (19)0.055 (2)0.0124 (15)0.0036 (15)0.0041 (15)
C80.0373 (17)0.0401 (19)0.0417 (17)0.0047 (14)0.0002 (14)0.0037 (14)
C90.0433 (19)0.042 (2)0.053 (2)0.0054 (15)0.0015 (15)0.0000 (16)
C100.055 (2)0.0335 (19)0.064 (2)0.0098 (16)0.0051 (17)0.0073 (16)
C110.0412 (18)0.041 (2)0.062 (2)0.0016 (15)0.0164 (16)0.0024 (17)
C120.075 (3)0.056 (2)0.069 (3)0.010 (2)0.004 (2)0.010 (2)
C130.081 (3)0.069 (3)0.069 (3)0.029 (2)0.000 (2)0.008 (2)
C140.066 (2)0.051 (2)0.070 (3)0.0115 (19)0.026 (2)0.001 (2)
C150.085 (3)0.074 (3)0.070 (3)0.008 (2)0.001 (2)0.025 (2)
C160.066 (3)0.070 (3)0.070 (3)0.024 (2)0.006 (2)0.006 (2)
C170.057 (2)0.0365 (19)0.077 (3)0.0035 (17)0.0037 (19)0.0052 (18)
C180.091 (3)0.068 (3)0.098 (3)0.026 (3)0.012 (3)0.003 (3)
C190.098 (4)0.073 (3)0.089 (3)0.009 (3)0.005 (3)0.020 (3)
Cl10.1354 (12)0.0544 (8)0.1367 (12)0.0263 (7)0.0429 (10)0.0117 (7)
N10.0396 (15)0.0378 (15)0.0533 (16)0.0061 (12)0.0041 (12)0.0042 (12)
N20.0470 (17)0.0483 (19)0.072 (2)0.0101 (14)0.0133 (15)0.0009 (15)
N30.0543 (18)0.0444 (19)0.071 (2)0.0108 (14)0.0119 (15)0.0055 (15)
N40.0434 (16)0.0315 (15)0.0606 (17)0.0021 (12)0.0067 (13)0.0009 (13)
N50.0459 (16)0.0328 (15)0.0624 (18)0.0066 (12)0.0040 (13)0.0031 (13)
O10.0739 (19)0.0358 (15)0.116 (2)0.0105 (13)0.0193 (17)0.0094 (14)
O20.0534 (15)0.0370 (14)0.0896 (19)0.0029 (11)0.0258 (13)0.0010 (12)
Geometric parameters (Å, º) top
C1—C61.371 (5)C11—C121.353 (5)
C1—C21.372 (5)C11—O21.414 (4)
C1—N11.431 (4)C12—C131.378 (6)
C2—C31.380 (5)C12—H120.9300
C2—H20.9300C13—C141.357 (6)
C3—C41.365 (6)C13—H130.9300
C3—H30.9300C14—C151.352 (6)
C4—C51.366 (6)C14—Cl11.749 (4)
C4—H40.9300C15—C161.384 (6)
C5—C61.383 (5)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.500 (6)
C7—N31.358 (4)C17—N51.506 (4)
C7—C81.362 (4)C17—C191.509 (6)
C7—C101.436 (5)C17—H170.9800
C8—N11.352 (4)C18—H18A0.9600
C8—N41.358 (4)C18—H18B0.9600
C9—N41.296 (4)C18—H18C0.9600
C9—O21.346 (4)C19—H19A0.9600
C9—N51.372 (4)C19—H19B0.9600
C10—O11.210 (4)C19—H19C0.9600
C10—N51.422 (4)N1—N21.385 (4)
C11—C161.348 (5)N2—N31.297 (4)
C6—C1—C2120.0 (3)C12—C13—H13120.4
C6—C1—N1120.6 (3)C15—C14—C13121.2 (4)
C2—C1—N1119.4 (3)C15—C14—Cl1119.4 (3)
C1—C2—C3120.4 (4)C13—C14—Cl1119.4 (3)
C1—C2—H2119.8C14—C15—C16119.7 (4)
C3—C2—H2119.8C14—C15—H15120.2
C4—C3—C2119.8 (4)C16—C15—H15120.2
C4—C3—H3120.1C11—C16—C15118.6 (4)
C2—C3—H3120.1C11—C16—H16120.7
C3—C4—C5119.8 (4)C15—C16—H16120.7
C3—C4—H4120.1C18—C17—N5111.7 (3)
C5—C4—H4120.1C18—C17—C19114.9 (4)
C4—C5—C6120.9 (4)N5—C17—C19111.0 (3)
C4—C5—H5119.5C18—C17—H17106.2
C6—C5—H5119.5N5—C17—H17106.2
C1—C6—C5119.1 (4)C19—C17—H17106.2
C1—C6—H6120.5C17—C18—H18A109.5
C5—C6—H6120.5C17—C18—H18B109.5
N3—C7—C8109.0 (3)H18A—C18—H18B109.5
N3—C7—C10130.5 (3)C17—C18—H18C109.5
C8—C7—C10120.5 (3)H18A—C18—H18C109.5
N1—C8—N4127.7 (3)H18B—C18—H18C109.5
N1—C8—C7106.0 (3)C17—C19—H19A109.5
N4—C8—C7126.3 (3)C17—C19—H19B109.5
N4—C9—O2118.8 (3)H19A—C19—H19B109.5
N4—C9—N5127.5 (3)C17—C19—H19C109.5
O2—C9—N5113.7 (3)H19A—C19—H19C109.5
O1—C10—N5121.3 (3)H19B—C19—H19C109.5
O1—C10—C7126.9 (3)C8—N1—N2108.0 (3)
N5—C10—C7111.8 (3)C8—N1—C1131.7 (3)
C16—C11—C12122.1 (4)N2—N1—C1120.2 (3)
C16—C11—O2119.3 (3)N3—N2—N1108.4 (3)
C12—C11—O2118.6 (3)N2—N3—C7108.6 (3)
C11—C12—C13119.1 (4)C9—N4—C8112.7 (3)
C11—C12—H12120.4C9—N5—C10121.0 (3)
C13—C12—H12120.4C9—N5—C17120.5 (3)
C14—C13—C12119.2 (4)C10—N5—C17118.5 (3)
C14—C13—H13120.4C9—O2—C11115.8 (3)
C6—C1—C2—C30.7 (6)C6—C1—N1—C80.1 (5)
N1—C1—C2—C3178.5 (4)C2—C1—N1—C8179.0 (3)
C1—C2—C3—C40.6 (7)C6—C1—N1—N2179.6 (3)
C2—C3—C4—C50.2 (7)C2—C1—N1—N20.4 (5)
C3—C4—C5—C60.1 (7)C8—N1—N2—N30.4 (4)
C2—C1—C6—C50.4 (5)C1—N1—N2—N3180.0 (3)
N1—C1—C6—C5178.7 (3)N1—N2—N3—C70.2 (4)
C4—C5—C6—C10.0 (6)C8—C7—N3—N20.1 (4)
N3—C7—C8—N10.3 (4)C10—C7—N3—N2178.8 (4)
C10—C7—C8—N1178.6 (3)O2—C9—N4—C8179.1 (3)
N3—C7—C8—N4179.7 (3)N5—C9—N4—C80.0 (5)
C10—C7—C8—N41.4 (5)N1—C8—N4—C9179.9 (3)
N3—C7—C10—O13.4 (6)C7—C8—N4—C90.1 (5)
C8—C7—C10—O1175.3 (4)N4—C9—N5—C101.6 (5)
N3—C7—C10—N5178.6 (3)O2—C9—N5—C10177.5 (3)
C8—C7—C10—N52.7 (5)N4—C9—N5—C17178.6 (3)
C16—C11—C12—C132.7 (6)O2—C9—N5—C172.3 (4)
O2—C11—C12—C13179.7 (3)O1—C10—N5—C9175.3 (3)
C11—C12—C13—C140.4 (6)C7—C10—N5—C92.8 (4)
C12—C13—C14—C152.5 (7)O1—C10—N5—C174.4 (5)
C12—C13—C14—Cl1177.4 (3)C7—C10—N5—C17177.4 (3)
C13—C14—C15—C163.1 (7)C18—C17—N5—C9119.2 (4)
Cl1—C14—C15—C16176.8 (3)C19—C17—N5—C9111.3 (4)
C12—C11—C16—C152.2 (6)C18—C17—N5—C1061.1 (4)
O2—C11—C16—C15179.8 (4)C19—C17—N5—C1068.5 (4)
C14—C15—C16—C110.7 (7)N4—C9—O2—C110.2 (5)
N4—C8—N1—N2179.5 (3)N5—C9—O2—C11179.0 (3)
C7—C8—N1—N20.5 (3)C16—C11—O2—C989.1 (4)
N4—C8—N1—C10.0 (6)C12—C11—O2—C993.2 (4)
C7—C8—N1—C1180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O20.982.162.679 (4)112
C6—H6···N40.932.363.013 (4)127
C4—H4···O1i0.932.463.317 (5)154
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H16ClN5O2
Mr381.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.8429 (3), 11.7890 (2), 18.8309 (3)
β (°) 91.737 (2)
V3)3737.36 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.26 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10890, 3290, 2697
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.188, 1.20
No. of reflections3290
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O20.982.162.679 (4)111.7
C6—H6···N40.932.363.013 (4)127.4
C4—H4···O1i0.932.463.317 (5)153.5
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province of China (grant Nos. B200624004, B20092412), the Shiyan Municipal Science and the Technology Bureau (grant No. 20061835) and Yunyang Medical College (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).

References

First citationBariana, D. S. (1971). J. Med. Chem. 14, 535–543.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.  CrossRef IUCr Journals Google Scholar
First citationHolland, A., Jackson, D., Chaplen, P., LUNT, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449.  CAS Google Scholar
First citationLevine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (NY), 16, 269–272.  CrossRef CAS Google Scholar
First citationLi, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11–14.  Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649.  CAS Google Scholar
First citationMontgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509.  PubMed CAS Web of Science Google Scholar
First citationRoblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142–o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2583-o2584
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds