organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[5-(4-hy­droxy­phen­yl)-3-methyl­sulfanyl-1-benzo­furan-2-yl]acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 September 2009; accepted 18 September 2009; online 26 September 2009)

In the title compound, C18H16O4S, the 4-hydroxy­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 34.52 (6)°. The methyl group of the methyl­sulfanyl substituent is almost perpendicular to the plane of the benzofuran fragment [100.90 (8)°] and is slightly tilted towards it. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds, and by inter­molecular C—H⋯π inter­actions between a methyl H atom of the methyl­sulfanyl substituent and the 4-hydroxy­phenyl ring.

Related literature

For the crystal structures of similar alkyl 2-[5-(4-hydroxy­phen­yl)-3-methyl­sulfanyl-1-benzofuran-2-yl]acetate derivatives, see: Choi et al. (2006[Choi, H. D., Kang, B. W., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5121-o5122.], 2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2267.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products involving a benzofuran ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O4S

  • Mr = 328.37

  • Monoclinic, P 21 /c

  • a = 13.6661 (6) Å

  • b = 7.6643 (3) Å

  • c = 15.6344 (7) Å

  • β = 95.4731 (6)°

  • V = 1630.10 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.45 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.961

  • 13917 measured reflections

  • 3703 independent reflections

  • 2894 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.08

  • 3703 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.81 (3) 1.97 (3) 2.7826 (18) 177 (2)
C18—H18CCgii 0.96 2.88 3.762 (2) 153
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1. Cg is the centroid of the C12–C17 phenyl ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran ring systems have received considerable interest in view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999), and these compounds are occurring in natural products (Akgul & Anil, 2003; von Reuss & König, 2004). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of alkyl 2-[5-(4-hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetate analogues (Choi et al., 2006, 2009), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-hydroxyphenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 34.52 (6)°. The methyl group of the methylsulfanyl substituent is tilted towards the plane of the benzofuran unit [100.90 (8)°]. The molecular packing (Fig. 2) is stabilized by intermolecular O—H···O hydrogen bonds between the hydroxy H atom and the oxygen of the CO unit, with a O4—H4···O3i (Table 1). The crystal packing (Fig. 2) is further stabilized by intermolecular C—H···π interactions between the methyl H atom of the methylsulfanyl substituent and the 4-hydroxyphenyl ring, with a C18—H18C···Cgii (Table 1; Cg is the centroid of the C12–C17 phenyl ring).

Related literature top

For the crystal structures of similar alkyl 2-[5-(4-hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetate derivatives, see: Choi et al. (2006, 2009). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products involving a benzofuran ring, see: Akgul & Anil (2003); von Reuss & König (2004). Cg is the centroid of the C12–C17 phenyl ring.

Experimental top

2-[5-(4-Hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetic acid (471 mg, 1.5 mmol) was added to a solution of concentrated sulfuric acid (3 drops) in methanol (20 ml), and the mixture was refluxed for 6h, then cooled. The solvent was evaporated and the residue was poured into water. The mixture was extracted with dichloromethane, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (benzene–acetone, 9 : 1 v/v) to afford the title compound as a colorless solid [yield 88%, m.p. 446–447 K; Rf = 0.49 (benzene–acetone, 9 : 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

The hydroxy H atom was found in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. O–H···O and C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 1, y + 1, - z + 3/2; (ii) - x + 1, - y + 1, - z + 1; (iii) - x + 1, y - 1/2, - z + 3/2.]
Methyl 2-[5-(4-hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetate top
Crystal data top
C18H16O4SF(000) = 688
Mr = 328.37Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6226 reflections
a = 13.6661 (6) Åθ = 2.6–27.3°
b = 7.6643 (3) ŵ = 0.22 mm1
c = 15.6344 (7) ÅT = 173 K
β = 95.4731 (6)°Block, colorless
V = 1630.10 (12) Å30.45 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3703 independent reflections
Radiation source: fine-focus sealed tube2894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.5°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 99
Tmin = 0.940, Tmax = 0.961l = 2020
13917 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.038P)2 + 0.664P]
where P = (Fo2 + 2Fc2)/3
3703 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H16O4SV = 1630.10 (12) Å3
Mr = 328.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6661 (6) ŵ = 0.22 mm1
b = 7.6643 (3) ÅT = 173 K
c = 15.6344 (7) Å0.45 × 0.25 × 0.25 mm
β = 95.4731 (6)°
Data collection top
Bruker SMART CCD
diffractometer
3703 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2894 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.961Rint = 0.046
13917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.30 e Å3
3703 reflectionsΔρmin = 0.25 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69956 (3)0.01335 (5)0.51042 (3)0.02878 (12)
O10.80580 (8)0.44720 (15)0.62041 (7)0.0290 (3)
O21.05303 (8)0.08785 (16)0.60370 (7)0.0330 (3)
O30.94920 (8)0.15452 (18)0.70121 (8)0.0379 (3)
O40.09318 (9)0.48769 (18)0.64861 (9)0.0377 (3)
H40.0789 (17)0.535 (3)0.6922 (17)0.061 (8)*
C10.72205 (11)0.2164 (2)0.55937 (9)0.0244 (3)
C20.65254 (11)0.33024 (19)0.59592 (9)0.0227 (3)
C30.55110 (11)0.3275 (2)0.60033 (9)0.0229 (3)
H30.51330.23620.57590.027*
C40.50698 (11)0.4634 (2)0.64192 (9)0.0236 (3)
C50.56623 (11)0.6008 (2)0.67804 (10)0.0277 (3)
H50.53650.69110.70570.033*
C60.66711 (12)0.6063 (2)0.67373 (10)0.0291 (3)
H60.70540.69770.69740.035*
C70.70754 (11)0.4684 (2)0.63246 (10)0.0254 (3)
C80.81116 (11)0.2933 (2)0.57520 (10)0.0268 (3)
C90.91070 (11)0.2406 (2)0.55381 (10)0.0289 (3)
H9A0.94500.34280.53540.035*
H9B0.90400.15910.50620.035*
C100.97139 (11)0.1573 (2)0.62834 (10)0.0266 (3)
C111.11920 (14)0.0120 (3)0.67179 (13)0.0460 (5)
H11A1.08570.07870.69970.055*
H11B1.14030.10060.71290.055*
H11C1.17540.03620.64780.055*
C120.39861 (11)0.46601 (19)0.64631 (10)0.0227 (3)
C130.33451 (11)0.4013 (2)0.57879 (10)0.0246 (3)
H130.36040.35310.53120.030*
C140.23358 (12)0.4071 (2)0.58084 (10)0.0272 (3)
H140.19250.36180.53540.033*
C150.19364 (11)0.4809 (2)0.65104 (10)0.0267 (3)
C160.25574 (12)0.5440 (2)0.71976 (10)0.0289 (3)
H160.22960.59190.76730.035*
C170.35686 (12)0.5352 (2)0.71715 (10)0.0273 (3)
H170.39790.57650.76370.033*
C180.62715 (13)0.0771 (2)0.41243 (12)0.0365 (4)
H18A0.56450.12010.42600.055*
H18B0.61760.02200.37500.055*
H18C0.66100.16710.38430.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (2)0.0222 (2)0.0323 (2)0.00435 (16)0.00399 (16)0.00155 (16)
O10.0219 (5)0.0333 (6)0.0313 (6)0.0002 (5)0.0002 (4)0.0056 (5)
O20.0240 (6)0.0455 (7)0.0299 (6)0.0094 (5)0.0041 (4)0.0007 (5)
O30.0297 (6)0.0546 (8)0.0309 (6)0.0048 (6)0.0105 (5)0.0091 (6)
O40.0244 (6)0.0501 (8)0.0394 (7)0.0021 (5)0.0082 (5)0.0150 (6)
C10.0250 (8)0.0242 (7)0.0241 (7)0.0036 (6)0.0028 (6)0.0005 (6)
C20.0246 (7)0.0218 (7)0.0218 (7)0.0030 (6)0.0023 (6)0.0008 (6)
C30.0238 (7)0.0210 (7)0.0239 (7)0.0001 (6)0.0020 (6)0.0002 (6)
C40.0253 (7)0.0241 (8)0.0212 (7)0.0030 (6)0.0011 (6)0.0011 (6)
C50.0279 (8)0.0268 (8)0.0277 (8)0.0059 (6)0.0004 (6)0.0059 (6)
C60.0299 (8)0.0275 (8)0.0289 (8)0.0013 (7)0.0031 (6)0.0064 (6)
C70.0210 (7)0.0300 (8)0.0246 (8)0.0020 (6)0.0006 (6)0.0003 (6)
C80.0259 (8)0.0305 (8)0.0240 (7)0.0033 (6)0.0019 (6)0.0001 (6)
C90.0227 (8)0.0370 (9)0.0274 (8)0.0022 (7)0.0039 (6)0.0001 (7)
C100.0204 (7)0.0295 (8)0.0304 (8)0.0025 (6)0.0055 (6)0.0002 (6)
C110.0311 (9)0.0670 (14)0.0392 (10)0.0158 (9)0.0007 (8)0.0111 (10)
C120.0255 (7)0.0190 (7)0.0238 (7)0.0035 (6)0.0033 (6)0.0010 (6)
C130.0290 (8)0.0223 (7)0.0232 (7)0.0026 (6)0.0061 (6)0.0021 (6)
C140.0279 (8)0.0276 (8)0.0257 (8)0.0010 (6)0.0006 (6)0.0038 (6)
C150.0240 (7)0.0268 (8)0.0299 (8)0.0001 (6)0.0057 (6)0.0007 (6)
C160.0311 (8)0.0314 (8)0.0252 (8)0.0018 (7)0.0080 (6)0.0054 (7)
C170.0295 (8)0.0284 (8)0.0239 (8)0.0017 (6)0.0015 (6)0.0039 (6)
C180.0385 (10)0.0337 (9)0.0361 (9)0.0017 (8)0.0020 (7)0.0023 (7)
Geometric parameters (Å, º) top
S1—C11.7488 (16)C8—C91.487 (2)
S1—C181.8099 (18)C9—C101.506 (2)
O1—C81.3810 (19)C9—H9A0.9700
O1—C71.3833 (18)C9—H9B0.9700
O2—C101.3260 (18)C11—H11A0.9600
O2—C111.451 (2)C11—H11B0.9600
O3—C101.2067 (19)C11—H11C0.9600
O4—C151.3708 (19)C12—C131.397 (2)
O4—H40.81 (3)C12—C171.398 (2)
C1—C81.354 (2)C13—C141.383 (2)
C1—C21.447 (2)C13—H130.9300
C2—C71.390 (2)C14—C151.392 (2)
C2—C31.395 (2)C14—H140.9300
C3—C41.395 (2)C15—C161.391 (2)
C3—H30.9300C16—C171.388 (2)
C4—C51.413 (2)C16—H160.9300
C4—C121.489 (2)C17—H170.9300
C5—C61.387 (2)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—C71.380 (2)C18—H18C0.9600
C6—H60.9300
C1—S1—C18100.90 (8)O3—C10—O2124.16 (15)
C8—O1—C7105.64 (12)O3—C10—C9124.63 (14)
C10—O2—C11115.50 (13)O2—C10—C9111.21 (13)
C15—O4—H4108.3 (17)O2—C11—H11A109.5
C8—C1—C2106.18 (14)O2—C11—H11B109.5
C8—C1—S1125.76 (12)H11A—C11—H11B109.5
C2—C1—S1127.94 (12)O2—C11—H11C109.5
C7—C2—C3119.49 (14)H11A—C11—H11C109.5
C7—C2—C1105.79 (13)H11B—C11—H11C109.5
C3—C2—C1134.71 (14)C13—C12—C17117.36 (14)
C2—C3—C4119.18 (14)C13—C12—C4121.01 (13)
C2—C3—H3120.4C17—C12—C4121.63 (14)
C4—C3—H3120.4C14—C13—C12121.72 (14)
C3—C4—C5119.09 (14)C14—C13—H13119.1
C3—C4—C12120.49 (14)C12—C13—H13119.1
C5—C4—C12120.41 (13)C13—C14—C15119.89 (14)
C6—C5—C4122.50 (14)C13—C14—H14120.1
C6—C5—H5118.8C15—C14—H14120.1
C4—C5—H5118.8O4—C15—C16122.95 (14)
C7—C6—C5116.33 (15)O4—C15—C14117.44 (14)
C7—C6—H6121.8C16—C15—C14119.61 (14)
C5—C6—H6121.8C17—C16—C15119.76 (14)
C6—C7—O1126.20 (14)C17—C16—H16120.1
C6—C7—C2123.41 (14)C15—C16—H16120.1
O1—C7—C2110.39 (13)C16—C17—C12121.63 (15)
C1—C8—O1111.98 (13)C16—C17—H17119.2
C1—C8—C9131.83 (15)C12—C17—H17119.2
O1—C8—C9116.18 (14)S1—C18—H18A109.5
C8—C9—C10112.89 (13)S1—C18—H18B109.5
C8—C9—H9A109.0H18A—C18—H18B109.5
C10—C9—H9A109.0S1—C18—H18C109.5
C8—C9—H9B109.0H18A—C18—H18C109.5
C10—C9—H9B109.0H18B—C18—H18C109.5
H9A—C9—H9B107.8
C18—S1—C1—C8114.97 (15)S1—C1—C8—C93.7 (3)
C18—S1—C1—C269.48 (15)C7—O1—C8—C10.77 (17)
C8—C1—C2—C70.71 (17)C7—O1—C8—C9179.94 (13)
S1—C1—C2—C7175.53 (12)C1—C8—C9—C1099.8 (2)
C8—C1—C2—C3178.91 (17)O1—C8—C9—C1079.33 (18)
S1—C1—C2—C34.8 (3)C11—O2—C10—O32.6 (2)
C7—C2—C3—C40.4 (2)C11—O2—C10—C9176.96 (15)
C1—C2—C3—C4179.96 (16)C8—C9—C10—O310.1 (2)
C2—C3—C4—C50.4 (2)C8—C9—C10—O2170.26 (14)
C2—C3—C4—C12178.85 (13)C3—C4—C12—C1334.2 (2)
C3—C4—C5—C60.1 (2)C5—C4—C12—C13144.26 (15)
C12—C4—C5—C6178.41 (14)C3—C4—C12—C17146.78 (15)
C4—C5—C6—C70.5 (2)C5—C4—C12—C1734.8 (2)
C5—C6—C7—O1179.75 (14)C17—C12—C13—C140.8 (2)
C5—C6—C7—C20.5 (2)C4—C12—C13—C14178.21 (14)
C8—O1—C7—C6179.09 (15)C12—C13—C14—C150.8 (2)
C8—O1—C7—C20.28 (17)C13—C14—C15—O4178.18 (15)
C3—C2—C7—C60.0 (2)C13—C14—C15—C161.8 (2)
C1—C2—C7—C6179.65 (15)O4—C15—C16—C17178.96 (16)
C3—C2—C7—O1179.43 (13)C14—C15—C16—C171.0 (2)
C1—C2—C7—O10.26 (17)C15—C16—C17—C120.8 (3)
C2—C1—C8—O10.92 (18)C13—C12—C17—C161.7 (2)
S1—C1—C8—O1175.42 (11)C4—C12—C17—C16177.40 (15)
C2—C1—C8—C9179.93 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.81 (3)1.97 (3)2.7826 (18)177 (2)
C18—H18C···Cgii0.962.883.762 (2)153
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16O4S
Mr328.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.6661 (6), 7.6643 (3), 15.6344 (7)
β (°) 95.4731 (6)
V3)1630.10 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.940, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
13917, 3703, 2894
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.08
No. of reflections3703
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.81 (3)1.97 (3)2.7826 (18)177 (2)
C18—H18C···Cgii0.962.883.762 (2)152.6
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Kang, B. W., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5121–o5122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds