Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 4-Bromo-5-[(2-bromoethyl)sulfanyl]-1,3-dithiole-2-thione

Jing-Jing Ding, ${ }^{\text {a }}$ Yong-Hua Zhang, ${ }^{\text {b }}$ Bang-Tun Zhao ${ }^{\text {b* }}$ and Gui-Rong Qu ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
Correspondence e-mail: zbt@lynu.edu.cn

Received 29 August 2009; accepted 11 September 2009

Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.033 ; w R$ factor $=0.081$; data-to-parameter ratio $=23.9$.

The title compound, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~S}_{4}$, consists of a statistically planar, 4-bromo-1,3-dithiole-2-thione unit [maximum deviation from the ring plane 0.001 (2) \AA], with a bromoethylsulfanyl substituent in the 5-position. In the crystal structure, weak intermolecular S...S $[3.438$ (15) and 3.522 (15) \AA A and $\mathrm{S} \cdots \mathrm{Br}$ [3.422 (14) and 3.498 (14) Å] interactions generate a three-dimensional supramolecular architecture.

Related literature

For general background to the applications of halogenated 1,3-dithiole-2-thiones, see: Alberola et al. 2006; Batsanov et al. (2001); Jeppesen et al. (2004); Segura \& Martin (2001); Wang et al. (1995). For a related structure, see: Zhao et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~S}_{4}$
$V=1047.3(5) \AA^{3}$
$M_{r}=352.14$
Monoclinic, $P 2_{1} / c$
$Z=4$
Mo $K \alpha$ radiation
$a=4.7892$ (12) \AA
$\mu=8.47 \mathrm{~mm}^{-1}$
$b=20.381$ (5) A
$T=294 \mathrm{~K}$
$c=10.809$ (3) \AA
$0.44 \times 0.17 \times 0.06 \mathrm{~mm}$
$\beta=96.922$ (3)

Data collection
Bruker SMART CCD area-detector 9101 measured reflections diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1997) 2391 independent reflections 1845 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 100$ parameters
$w R\left(F^{2}\right)=0.081 \quad$ H-atom parameters constrained
$S=1.05$
2391 reflections
$\Delta \rho_{\text {max }}=0.38 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.81 \mathrm{e}^{\AA^{-3}}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China (grant No. 20872058).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2640).

References

Alberola, A., Collis, R. J., Garcia, F. \& Howard, R. E. (2006). Tetrahedron, 62, 8152-8157.
Batsanov, A. S., Bryce, M. R., Chesney, A., Howard, J. A. K., John, D. E., Moore, A. J., Wood, C. L., Gershtenman, H., Becker, J. Y., Khodorkovsky, V. Y., Ellern, A., Bernstein, J., Perepichka, I. F., Rotello, V., Gray, M. \& Cuello, A. O. (2001). J. Mater. Chem. 11, 2181-2191.
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Jeppesen, J. O., Nielsen, M. B. \& Becher, J. (2004). Chem. Rev. 104, 5115-5131.
Segura, J. L. \& Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372-1409.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, C., Becker, J. Y., Bernstein, J., Ellern, A. \& Khodorkovsky, V. (1995). J. Mater. Chem. 5, 1559-1562
Zhao, B.-T., Ding, J.-J. \& Qu, G.-R. (2008). Acta Cryst. E64, o2078.

supporting information

Acta Cryst. (2009). E65, o2479 [doi:10.1107/S1600536809036770]

4-Bromo-5-[(2-bromoethyl)sulfanyl]-1,3-dithiole-2-thione

Jing-Jing Ding, Yong-Hua Zhang, Bang-Tun Zhao and Gui-Rong Qu

S1. Comment

Tetrathiafulvalene (TTF) and its derivatives have attracted great interest for their high electronic conductivity, superconductivity as well as supramolecular features (Segura \& Martin, 2001; Jeppesen et al., 2004). The attachment of halogen atoms to TTF framework reduces the π-electron donating ability and this effect is additive with an increasing number of halogens on the TTF system (Wang et al., 1995), As important precursors to the halogenated TTF derivatives, 1,3-dithiole-2-(thi)ones involving bromine groups have also attracted attention (Batsanov et al., 2001; Alberola et al., 2006). We describe here the synthesis and structure of a novel 4-bromo-5-[(2-bromoethyl)sulfanyl]-1,3-dithiole-2-thione compound, (I) (Fig. 1).
As seen from Fig. 1, all five atoms of five-membered dithiole ring and three exocyclic $\mathrm{S} 1, \mathrm{Br} 1$ and S 4 atoms are nearly coplanar with a maximum deviation from the least-squares plane of only $0.1045 \AA(\mathrm{Br} 2)$. The $\mathrm{C}-\mathrm{S}$ bond lengths range from 1.647 (4) to 1.814 (4) \AA. The bond distances C1-S1 (1.647 (3)) $\AA, \mathrm{C} 2-\mathrm{S} 4$ (1.753 (3)) \AA, and Br2-C3(1.883 (4)) \AA are relatively short which indicates a degree of conjugation of the $\mathrm{S} 1, \mathrm{~S} 4$ and Br 2 substituents with the 1,3-dithiol ring system. However, the C4-S4 bond is typical of a single bond with a bond length of 1.814 (4) \AA. The structure of title compound is very similar to that of 3-(2-thioxo-1,3- dithiol-4-ylsulfanyl)propanenitrile (Zhao et al., 2008).
In the crystal structure, molecules of (I) form 1-dimensional chains by way of intermolecular $\mathrm{S} \cdots \mathrm{S}$ interactions along a axis (Fig.2). The distances between alternate S2 atoms are $3.438(15) \AA$ and 3.522 (15) \AA, respectively. In addition, the 1 dimensional chains are interconnected by intermolecular $\mathrm{S} 1 \cdots \mathrm{Br} 2$ interactions $(\mathrm{S} 1 \cdots \mathrm{Br} 2=3.422(14) \AA$) to generate a 2dimensional sheet (Fig. 3) in the $a b$ plane. These are further linked by intermolecular $\mathrm{Br} 1 \cdots \mathrm{~S} 1$ interactions ($\mathrm{S} 1 \cdots \mathrm{Br} 1=$ 3.498 (14) Å) to form a 3-dimensional supramolecular structure (Fig. 4).

S2. Experimental

A solution of $\mathrm{PPh}_{3}(3.04 \mathrm{~g}, 11.6 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ was added dropwise to a solution of 4-(2-hydroxy-ethylsulfanyl)-1,3-dithiole-2-thione ($1.67 \mathrm{~g}, 11.6 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(3.84 \mathrm{~g}, 11.6 \mathrm{mmol})$, also in dichloromethane $(50 \mathrm{~mL})$, over 2 h . The mixture was then stirred for 8 h at room temperature. The resulting solution was washed with water and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then evaporated under reduced pressure and the crude product was purified by column chromatography on silica. (dichloromethane:petroleum ether=2:3) to yield the title compound as yellow solid in 85% yield. Yellow block-like single crystals were obtained from slow evaporation of a dichloromethane solution at room temperature.

S3. Refinement

All H -atoms were positioned geometrically and refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.97 \AA, \mathrm{U}_{\mathrm{iso}}=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for CH_{2} atoms.

Figure 1
The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.

Figure 2
The 1-dimensional chain formed by $\mathrm{S} \cdots \mathrm{S}$ interactions, shown as dashed lines.

Figure 3
The 2-dimensional sheet formed by intermolecular $\mathrm{S} 2 \cdots \mathrm{~S} 2$ and $\mathrm{S} 1 \cdots \mathrm{Br} 2$ interactions, shown as dashed lines.

Figure 4
The 3-dimensional network formed by intermolecular $\mathrm{S} 2 \cdots \mathrm{~S} 2, \mathrm{~S} 1 \cdots \mathrm{Br} 2$ and $\mathrm{S} 1 \cdots \mathrm{Br} 1$ interactions, shown as dashed lines.

4-Bromo-5-[(2-bromoethyl)sulfanyl]-1,3-dithiole-2-thione

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~S}_{4}$
$M_{r}=352.14$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=4.7892$ (12) \AA
$b=20.381$ (5) \AA
$c=10.809(3) \AA$
$\beta=96.922(3)^{\circ}$
$V=1047.3$ (5) \AA^{3}
$Z=4$
$F(000)=672$
$D_{\mathrm{x}}=2.233 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 331 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Cell parameters from 3116 reflections
$\theta=3.6-26.1^{\circ}$
$\mu=8.47 \mathrm{~mm}^{-1}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.117, T_{\text {max }}=0.613$
$T=294 \mathrm{~K}$
Block, yellow
$0.44 \times 0.17 \times 0.06 \mathrm{~mm}$

9101 measured reflections
2391 independent reflections
1845 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-6 \rightarrow 6$
$k=-26 \rightarrow 26$
$l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=1.05$
2391 reflections
100 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0361 P)^{2}+0.5713 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.38$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.81 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes)
are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br 1	$0.33646(9)$	$0.39616(2)$	$-0.03831(4)$	$0.05782(14)$
Br 2	$-0.12031(10)$	$0.252098(19)$	$0.33275(4)$	$0.06158(15)$
S 1	$0.6869(2)$	$0.39508(5)$	$0.69591(9)$	$0.0506(2)$
S 2	$0.25370(18)$	$0.43827(4)$	$0.49022(8)$	$0.0406(2)$
S 3	$0.3149(2)$	$0.30064(4)$	$0.54490(10)$	$0.0517(3)$
S 4	$-0.20103(18)$	$0.42118(5)$	$0.27552(9)$	$0.0481(2)$
C 1	$0.4319(7)$	$0.37956(16)$	$0.5834(3)$	$0.0379(7)$
C 2	$0.0385(7)$	$0.38613(16)$	$0.3924(3)$	$0.0379(7)$
C 3	$0.0692(8)$	$0.32205(17)$	$0.4204(3)$	$0.0439(8)$

C4	$0.0261(7)$	$0.43820(17)$	$0.1567(3)$	$0.0432(8)$
H4A	-0.0737	0.4654	0.0923	0.052^{*}
H4B	0.1900	0.4623	0.1935	0.052^{*}
C5	$0.1193(8)$	$0.37586(17)$	$0.0993(4)$	$0.0458(8)$
H5A	-0.0441	0.3498	0.0686	0.055^{*}
H5B	0.2340	0.3503	0.1620	0.055^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0521(2)$	$0.0758(3)$	$0.0462(3)$	$0.00042(19)$	$0.00845(17)$	$0.00156(19)$
Br2	$0.0753(3)$	$0.0501(2)$	$0.0572(3)$	$-0.01945(19)$	$-0.0007(2)$	$-0.00821(18)$
S1	$0.0503(5)$	$0.0586(6)$	$0.0406(5)$	$-0.0006(4)$	$-0.0045(4)$	$0.0014(4)$
S2	$0.0410(5)$	$0.0369(4)$	$0.0424(5)$	$-0.0004(3)$	$-0.0003(4)$	$-0.0019(3)$
S3	$0.0659(6)$	$0.0388(4)$	$0.0483(6)$	$-0.0032(4)$	$-0.0021(5)$	$0.0048(4)$
S4	$0.0341(5)$	$0.0628(5)$	$0.0462(5)$	$0.0083(4)$	$0.0001(4)$	$-0.0038(4)$
C1	$0.0390(18)$	$0.0420(17)$	$0.0342(19)$	$0.0010(14)$	$0.0098(14)$	$0.0002(14)$
C2	$0.0346(17)$	$0.0441(17)$	$0.0349(19)$	$-0.0009(14)$	$0.0039(13)$	$-0.0031(14)$
C3	$0.048(2)$	$0.0448(18)$	$0.039(2)$	$-0.0081(16)$	$0.0068(16)$	$-0.0056(15)$
C4	$0.0414(19)$	$0.0425(18)$	$0.043(2)$	$0.0030(15)$	$-0.0038(15)$	$0.0016(15)$
C5	$0.045(2)$	$0.0448(18)$	$0.048(2)$	$-0.0022(15)$	$0.0083(16)$	$-0.0004(16)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Br1-C5	1.959 (4)	S4-C4	1.814 (4)
Br2-C3	1.883 (3)	C2-C3	1.345 (5)
S1-C1	1.647 (4)	C4-C5	1.505 (5)
S2-C1	1.723 (3)	C4-H4A	0.9700
S2-C2	1.746 (3)	C4-H4B	0.9700
S3-C3	1.734 (4)	C5-H5A	0.9700
S3-C1	1.737 (3)	C5-H5B	0.9700
S4-C2	1.753 (4)		
C1-S2-C2	98.40 (16)	C5-C4-S4	111.3 (2)
C3-S3-C1	97.02 (17)	C5-C4-H4A	109.4
C2-S4-C4	101.05 (16)	S4-C4-H4A	109.4
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	124.7 (2)	C5-C4-H4B	109.4
S1-C1-S3	122.9 (2)	S4-C4-H4B	109.4
S2-C1-S3	112.34 (19)	H4A-C4-H4B	108.0
C3-C2-S2	114.5 (3)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	110.2 (2)
C3-C2-S4	127.0 (3)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.6
S2-C2-S4	118.41 (19)	$\mathrm{Br} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 3$	117.7 (3)	C4-C5-H5B	109.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 2$	126.1 (3)	$\mathrm{Br} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.6
$\mathrm{S} 3-\mathrm{C} 3-\mathrm{Br} 2$	116.2 (2)	H5A-C5-H5B	108.1
$\mathrm{C} 2-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	177.1 (2)	S2-C2-C3-S3	-0.9 (4)
C2-S2-C1-S3	-2.4 (2)	S4-C2-C3-S3	-177.7 (2)

$\mathrm{C} 3-\mathrm{S} 3-\mathrm{C} 1-\mathrm{S} 1$	$-177.5(2)$
$\mathrm{C} 3-\mathrm{S} 3-\mathrm{C} 1-\mathrm{S} 2$	$2.0(2)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 2-\mathrm{C} 3$	$2.0(3)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 2-\mathrm{S} 4$	$179.1(2)$
$\mathrm{C} 4-\mathrm{S} 4-\mathrm{C} 2-\mathrm{C} 3$	$-102.6(3)$
$\mathrm{C} 4-\mathrm{S} 4-\mathrm{C} 2-\mathrm{S} 2$	$80.7(2)$

$\mathrm{S} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 2$	$-178.3(2)$
$\mathrm{S} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 2$	$4.9(5)$
$\mathrm{C} 1-\mathrm{S} 3-\mathrm{C} 3-\mathrm{C} 2$	$-0.7(3)$
$\mathrm{C} 1-\mathrm{S} 3-\mathrm{C} 3-\mathrm{Br} 2$	$176.9(2)$
$\mathrm{C} 2-\mathrm{S} 4-\mathrm{C} 4-\mathrm{C} 5$	$69.7(3)$
$\mathrm{S} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	$175.02(17)$

