metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl (S_p)-2-(diphenylphosphino)ferrocene-1-carboxylate

Petr Štěpnička,* Jiří Tauchman and Ivana Císařová

Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague; Hlavova 2030, 12840 Prague 2, Czech Republic Correspondence e-mail: stepnic@natur.cuni.cz

Received 8 September 2009; accepted 10 September 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.060; data-to-parameter ratio = 17.5.

The title compound, $[Fe(C_5H_5)(C_{19}H_{16}O_2P)]$, obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (S_p) -2-(diphenylphosphino)ferrocene-1-carboxylate from methanol, crystallizes in the chiral space group $P2_12_12_1$. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetryrelated molecules are linked *via* weak $C-H \cdots O$ interactions.

Related literature

For an overview of the chemistry of ferrocene, see: Stěpnička (2008). For the NMR spectroscopic data of the title compound, see: You et al. (2002); Lamač et al. (2008). For the structure of similar compounds, see: Lamač et al. (2009); Štěpnička (2002).

Experimental

Crystal data [Fe(C₅H₅)(C₁₉H₁₆O₂P)] $M_r = 428.23$ Orthorhombic, P2₁2₁2₁ a = 10.6867 (2) Åb = 12.9015 (3) Å c = 14.1042 (2) Å

V = 1944.61 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.88 \text{ mm}^{-1}$ T = 150 K $0.40 \times 0.40 \times 0.28 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	4449 independent reflections
Absorption correction: none	4228 reflections with $I > 2\sigma(I)$
15400 measured reflections	$R_{\text{int}} = 0.036$
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.025$	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.060$	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
S = 1.06	Absolute structure: Flack (1983),
4449 reflections	1918 Friedel pairs
254 parameters	Flack parameter: 0.004 (11)
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4-H4···O1 ⁱ	0.93	2.58	3.184 (2)	123
$C15-H15\cdots O1^{ii}$	0.93	2.58	3.494 (3)	167

Symmetry codes: (i) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y - \frac{1}{2}, -z + 1$.

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

This work was supported financially by the Grant Agency of Charles University in Prague (project No. 58009) and is a part of the long-term research project supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2145).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lamač, M., Císařová, I. & Štěpnička, P. (2009). New J. Chem. 33, 1549-1562. Lamač, M., Cvačka, J. & Štěpnička, P. (2008). J. Organomet. Chem. 693, 3430-
- 3434
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Štěpnička, P. (2002). New J. Chem. 26, 567-575.
- Štěpnička, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Wiley: Chichester.
- You, S.-L., Hou, X.-L., Dai, L.-X., Yu, Y.-H. & Xia, W. (2002). J. Org. Chem. 67, 4684-4695.

supporting information

Acta Cryst. (2009). E65, m1216 [doi:10.1107/S1600536809036654]

Methyl (S_p)-2-(diphenylphosphino)ferrocene-1-carboxylate

Petr Štěpnička, Jiří Tauchman and Ivana Císařová

S1. Comment

The crystal structure of the title compound was determined at 150 (2) K (Fig. 1). It crystallizes with the symmetry of the chiral space group $P_{2_12_12_1}$ and one molecule in the asymmetric unit. The molecular geometry of the title compound compares well with the data reported previously for (S_p)-2-(diphenylphosphinoyl)ferrocene-1-carboxylic acid (Štěpnička, 2002) and methyl (R_p)-1',2-bis(diphenylphosphino)ferrocene-1-carboxylate (Lamač *et al.*, 2009). The geometry of the ferrocene moiety is quite regular, showing similar Fe—ring centroid distances (1.6471 (9) and 1.6567 (9) Å for the rings C(1–5) and C(6–10), respectively) and insignificant tilting (the dihedral angle of the cyclopentadienyl mean planes being 2.08 (12) °). The attached substituents do not seem to impose any pronounced deformation of the ferrocene core, as evidenced by the C11—C1—C2—P torsion angle of –5.5 (3) °. However, the diphenylphosphinyl group binds somewhat unsymmetrically as indicated by the differences in the C(1/3)—C2—P angles being *ca* 2.7 ° (*cf.* the difference of the C(2/5)—C1—C11 angles, which is below 0.1 °, and also the perpendicular distances from the C(1–5) ring mean-plane: 0.136 (1) Å for P and –0.018 (2) Å for C11). This is reflected also by the variation in the Fe–C distances (2.0283 (18)–2.0672 (18) Å) for the substituted cyclopentadienyl ring (C1–C5).

The crystal structure of the title compound is essentially molecular, with symmetry related molecules forming only soft C—H…O contacts (Table 1).

S2. Experimental

The title compound was formed on recrystallization of 1-hydroxybenzotriazolyl (S_p)-2-(diphenylphosphino)ferrocene-1carboxylate (Štěpnička & Tauchman, unpublished results) from warm methanol, apparently resulting from a transesterification reaction of the starting activated ester. Its formulation was established by NMR spectroscopy (You *et al.*, 2002; Lamač *et al.*, 2008).

S3. Refinement

The H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 (aromatic CH) and 0.96 (CH₃) Å, and $U_{iso}(H) = k \times U_{eq}$ (parent C-atom), where k = 1.2 for aromatic CH, and 1.5 for CH₃.

Figure 1

View of the molecular structure of the title compound, showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Methyl (S_p)-2-(diphenylphosphino)ferrocene-1-carboxylate

Crystal data		
$[Fe(C_{5}H_{5})(C_{19}H_{16}O_{2}P)]$	F(000) = 888	
$M_{r} = 428.23$	$D_x = 1.463 \text{ Mg m}^{-3}$	
Orthorhombic, $P2_{1}2_{1}2_{1}$	Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}	
Hall symbol: P 2ac 2ab	Cell parameters from 2517 reflections	
a = 10.6867 (2) Å	\theta = 1.0-27.5^\circ	
b = 12.9015 (3) Å	\mu = 0.88 mm^{-1}	
c = 14.1042 (2) Å	T = 150 K	
V = 1944.61 (6) Å ³	Block, orange	
Z = 4	0.40 \times 0.40 \times 0.28 mm	
Data collection		
Nonius KappaCCD	ω and $π$ scans to fill the Ewald sphere	
diffractometer	15400 measured reflections	
Radiation source: fine-focus sealed tube	4449 independent reflections	
Horizontally mounted graphite crystal	4228 reflections with $I > 2σ(I)$	
monochromator	$R_{int} = 0.036$	
Detector resolution: 9.091 pixels mm ⁻¹	$θ_{max} = 27.5^\circ$, $θ_{min} = 2.1^\circ$	

$h = -13 \rightarrow 13$	$l = -18 \longrightarrow 18$
$k = -16 \rightarrow 16$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.060$	$w = 1/[\sigma^2(F_o^2) + (0.0238P)^2 + 0.8124P]$
<i>S</i> = 1.06	where $P = (F_0^2 + 2F_c^2)/3$
4449 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
254 parameters	$\Delta ho_{ m max} = 0.51 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.29 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1918 Friedel
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.004 (11)
map	

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and i	sotropic or equiv	valent isotropic dis	placement paramete	ers $(Å^2)$
-------------------------------------	-------------------	----------------------	--------------------	-------------

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.29965 (2)	0.18843 (2)	0.72459 (2)	0.0181 (1)
P1	0.09939 (4)	0.08083 (4)	0.56683 (3)	0.0184 (1)
01	0.36618 (12)	0.01291 (12)	0.50125 (10)	0.0306 (4)
O2	0.53342 (11)	0.03569 (11)	0.59516 (9)	0.0268 (4)
C1	0.33684 (16)	0.04902 (14)	0.66438 (12)	0.0188 (5)
C2	0.20328 (18)	0.06630 (13)	0.66896 (11)	0.0184 (4)
C3	0.17351 (16)	0.07818 (15)	0.76755 (13)	0.0224 (5)
C4	0.28491 (19)	0.06905 (15)	0.82171 (12)	0.0252 (5)
C5	0.38563 (17)	0.05158 (14)	0.75918 (13)	0.0224 (5)
C6	0.40940 (19)	0.30253 (16)	0.66633 (14)	0.0273 (6)
C7	0.28422 (19)	0.31090 (16)	0.63399 (13)	0.0284 (5)
C8	0.20585 (19)	0.32594 (14)	0.71400 (16)	0.0318 (6)
С9	0.2832 (2)	0.32638 (16)	0.79572 (14)	0.0322 (6)
C10	0.40893 (18)	0.31174 (16)	0.76638 (14)	0.0284 (5)
C11	0.40972 (16)	0.03148 (13)	0.57782 (13)	0.0192 (5)
C12	0.04477 (16)	-0.05296 (14)	0.54954 (12)	0.0188 (5)
C13	-0.04839 (17)	-0.06903 (16)	0.48155 (12)	0.0221 (5)
C14	-0.09729 (19)	-0.16720 (16)	0.46657 (13)	0.0268 (5)
C15	-0.0535 (2)	-0.25121 (17)	0.51784 (15)	0.0304 (6)
C16	0.0408 (2)	-0.23636 (16)	0.58396 (15)	0.0308 (6)
C17	0.08946 (18)	-0.13788 (15)	0.59981 (14)	0.0249 (5)
C18	-0.04185 (16)	0.13315 (15)	0.62459 (13)	0.0215 (5)

C19	-0.0773 (2)	0.23452 (16)	0.60378 (15)	0.0305 (6)
C20	-0.1852 (2)	0.2765 (2)	0.64381 (16)	0.0438 (8)
C21	-0.2570 (2)	0.2184 (2)	0.70388 (16)	0.0431 (8)
C22	-0.22483 (18)	0.11714 (19)	0.72475 (16)	0.0371 (7)
C23	-0.11703 (17)	0.07494 (17)	0.68559 (14)	0.0278 (5)
C24	0.61344 (18)	0.01350 (18)	0.51607 (14)	0.0309 (6)
H3	0.09400	0.09000	0.79200	0.0270*
H4	0.29050	0.07380	0.88740	0.0300*
Н5	0.46900	0.04320	0.77630	0.0270*
H6	0.47960	0.29270	0.62840	0.0330*
H7	0.25800	0.30720	0.57120	0.0340*
H8	0.11940	0.33400	0.71300	0.0380*
Н9	0.25610	0.33480	0.85790	0.0390*
H10	0.47860	0.30870	0.80580	0.0340*
H13	-0.07780	-0.01340	0.44600	0.0270*
H14	-0.16000	-0.17670	0.42170	0.0320*
H15	-0.08690	-0.31690	0.50800	0.0360*
H16	0.07170	-0.29260	0.61790	0.0370*
H17	0.15250	-0.12880	0.64450	0.0300*
H19	-0.02870	0.27440	0.56300	0.0370*
H20	-0.20840	0.34430	0.62960	0.0530*
H21	-0.32830	0.24730	0.73100	0.0520*
H22	-0.27500	0.07760	0.76470	0.0450*
H23	-0.09470	0.00710	0.70020	0.0330*
H24A	0.61180	-0.05950	0.50310	0.0460*
H24B	0.69750	0.03430	0.53080	0.0460*
H24C	0.58460	0.05090	0.46140	0.0460*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0169 (1)	0.0204 (1)	0.0170(1)	-0.0002 (1)	0.0003 (1)	-0.0020(1)
P1	0.0167 (2)	0.0190 (2)	0.0196 (2)	-0.0010 (2)	-0.0012 (2)	0.0012 (2)
01	0.0238 (7)	0.0435 (9)	0.0244 (6)	0.0042 (6)	-0.0028 (6)	-0.0110 (6)
O2	0.0157 (6)	0.0392 (8)	0.0256 (7)	0.0010 (6)	0.0011 (5)	-0.0030 (6)
C1	0.0189 (8)	0.0166 (9)	0.0210 (8)	0.0004 (7)	-0.0013 (7)	0.0004 (7)
C2	0.0173 (8)	0.0189 (8)	0.0190 (7)	-0.0036 (8)	-0.0004 (7)	0.0007 (6)
C3	0.0190 (8)	0.0273 (9)	0.0208 (8)	-0.0038 (7)	0.0048 (7)	0.0011 (8)
C4	0.0271 (9)	0.0311 (10)	0.0175 (8)	-0.0027 (8)	0.0000 (8)	0.0052 (7)
C5	0.0217 (8)	0.0231 (9)	0.0225 (9)	0.0013 (7)	-0.0042 (7)	0.0035 (7)
C6	0.0283 (10)	0.0227 (10)	0.0309 (9)	-0.0052 (9)	0.0065 (8)	0.0011 (8)
C7	0.0367 (10)	0.0191 (8)	0.0293 (9)	0.0027 (9)	-0.0063 (8)	0.0033 (8)
C8	0.0259 (9)	0.0198 (9)	0.0497 (12)	0.0048 (8)	-0.0013 (10)	-0.0072 (9)
C9	0.0371 (11)	0.0279 (10)	0.0316 (10)	-0.0041 (9)	0.0078 (9)	-0.0133 (8)
C10	0.0270 (9)	0.0267 (9)	0.0315 (9)	-0.0060 (9)	-0.0048 (8)	-0.0047 (9)
C11	0.0181 (8)	0.0152 (8)	0.0244 (8)	0.0025 (7)	-0.0003 (7)	0.0002 (7)
C12	0.0161 (8)	0.0224 (9)	0.0178 (8)	0.0000 (7)	0.0034 (6)	-0.0025 (7)
C13	0.0232 (8)	0.0250 (10)	0.0181 (8)	0.0009 (8)	0.0009 (7)	-0.0007 (7)

C14	0.0222 (8)	0.0321 (11)	0.0261 (9)	-0.0021 (8)	-0.0012 (8)	-0.0074 (8)
C15	0.0297 (10)	0.0238 (10)	0.0376 (12)	-0.0064 (8)	0.0043 (9)	-0.0061 (9)
C16	0.0337 (11)	0.0218 (10)	0.0370 (11)	0.0019 (8)	-0.0023 (9)	0.0028 (9)
C17	0.0253 (9)	0.0233 (9)	0.0261 (9)	-0.0001 (8)	-0.0031 (8)	-0.0003 (7)
C18	0.0160 (8)	0.0236 (9)	0.0250 (9)	0.0000 (7)	-0.0041 (7)	-0.0048 (7)
C19	0.0332 (11)	0.0276 (10)	0.0307 (10)	0.0077 (9)	-0.0088 (9)	-0.0023 (8)
C20	0.0474 (14)	0.0429 (13)	0.0412 (12)	0.0272 (12)	-0.0170 (11)	-0.0124 (10)
C21	0.0252 (10)	0.0666 (17)	0.0374 (12)	0.0200 (11)	-0.0078 (9)	-0.0214 (11)
C22	0.0213 (9)	0.0546 (14)	0.0354 (11)	-0.0048 (9)	0.0035 (9)	-0.0135 (11)
C23	0.0193 (8)	0.0300 (10)	0.0342 (10)	-0.0030 (8)	0.0033 (8)	-0.0073 (8)
C24	0.0201 (9)	0.0393 (12)	0.0332 (10)	0.0027 (8)	0.0069 (8)	-0.0014 (9)

Geometric parameters (Å, °)

Fe1—C1	2.0283 (18)	C14—C15	1.384 (3)
Fe1—C2	2.0394 (17)	C15—C16	1.386 (3)
Fe1—C3	2.0512 (18)	C16—C17	1.391 (3)
Fe1—C4	2.0672 (18)	C18—C19	1.393 (3)
Fe1—C5	2.0493 (18)	C18—C23	1.396 (3)
Fe1—C6	2.054 (2)	C19—C20	1.394 (3)
Fe1—C7	2.039 (2)	C20—C21	1.367 (3)
Fe1—C8	2.0431 (19)	C21—C22	1.383 (4)
Fe1—C9	2.051 (2)	C22—C23	1.389 (3)
Fe1—C10	2.060 (2)	С3—Н3	0.9300
P1C2	1.8283 (18)	C4—H4	0.9300
P1-C12	1.8384 (19)	С5—Н5	0.9300
P1-C18	1.8433 (18)	С6—Н6	0.9300
01—C11	1.200 (2)	С7—Н7	0.9300
O2—C11	1.346 (2)	C8—H8	0.9300
O2—C24	1.434 (2)	С9—Н9	0.9300
C1—C2	1.446 (3)	C10—H10	0.9300
C1—C5	1.436 (2)	C13—H13	0.9300
C1-C11	1.466 (2)	C14—H14	0.9300
C2—C3	1.435 (2)	C15—H15	0.9300
C3—C4	1.419 (3)	C16—H16	0.9300
C4—C5	1.410 (3)	C17—H17	0.9300
С6—С7	1.418 (3)	C19—H19	0.9300
C6—C10	1.416 (3)	C20—H20	0.9300
С7—С8	1.419 (3)	C21—H21	0.9300
С8—С9	1.418 (3)	C22—H22	0.9300
C9—C10	1.419 (3)	C23—H23	0.9300
C12—C13	1.398 (2)	C24—H24A	0.9600
C12—C17	1.390 (3)	C24—H24B	0.9600
C13—C14	1.386 (3)	C24—H24C	0.9600
C1—Fe1—C2	41.65 (7)	Fe1—C8—C9	70.01 (12)
C1—Fe1—C3	68.75 (7)	C7—C8—C9	107.63 (18)
C1—Fe1—C4	68.39 (7)	Fe1—C9—C8	69.45 (11)

C1—Fe1—C5	41.22 (7)	Fe1—C9—C10	70.15 (12)
C1—Fe1—C6	110.87 (8)	C8—C9—C10	108.33 (17)
C1—Fe1—C7	116.15 (7)	Fe1—C10—C6	69.64 (12)
C1—Fe1—C8	146.67 (8)	Fe1—C10—C9	69.47 (11)
C1—Fe1—C9	172.42 (8)	C6—C10—C9	107.77 (17)
C1—Fe1—C10	133.92 (7)	O1—C11—O2	123.54 (16)
C2—Fe1—C3	41.06 (7)	01—C11—C1	125.06 (16)
C2—Fe1—C4	68.95 (7)	02—C11—C1	111.37 (15)
C^2 —Fe1—C5	69.66 (7)	P1	117.16 (14)
C_2 Fel—C6	133.49(7)	P1 - C12 - C17	124.29(14)
C_2 Fe1 C_7	108.47(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124.29(14) 118 55 (17)
$C_2 = C_1 = C_1^2$	100.47(7) 112.27(8)	$C_{12} = C_{12} = C_{14}$	110.55(17) 120.57(18)
C_2 Fe1 C_0	113.27(8)	C12 - C13 - C14	120.57(18)
C_2 —FeI—C9	144.04 (8)	C13 - C14 - C15	120.55 (18)
C2—FeI—C10	1/3.33(7)		119.5 (2)
C_3 —FeI—C4	40.32 (7)		120.41 (19)
C3—Fel—C5	68.09 (7)	C12—C17—C16	120.64 (18)
C3—Fe1—C6	172.11 (8)	P1—C18—C19	118.26 (14)
C3—Fe1—C7	132.02 (8)	P1—C18—C23	123.13 (15)
C3—Fe1—C8	107.54 (8)	C19—C18—C23	118.58 (17)
C3—Fe1—C9	113.64 (8)	C18—C19—C20	120.3 (2)
C3—Fe1—C10	145.46 (8)	C19—C20—C21	120.2 (2)
C4—Fe1—C5	40.05 (7)	C20—C21—C22	120.7 (2)
C4—Fe1—C6	147.42 (8)	C21—C22—C23	119.5 (2)
C4—Fe1—C7	170.60 (8)	C18—C23—C22	120.8 (2)
C4—Fe1—C8	131.15 (8)	Fe1—C3—H3	127.00
C4—Fe1—C9	108.42 (8)	С2—С3—Н3	125.00
C4—Fe1—C10	115.41 (8)	С4—С3—Н3	125.00
C5—Fe1—C6	117.18 (8)	Fe1—C4—H4	127.00
C5—Fe1—C7	148.56 (8)	C3—C4—H4	126.00
C5—Fe1—C8	170 22 (8)	C5—C4—H4	126.00
C_5 —Fe1—C9	132.05(8)	Fe1—C5—H5	126.00
C5—Fe1—C10	102.00(0) 110.07(8)	C1	126.00
C6—Fe1—C7	40 53 (8)	C4-C5-H5	126.00
C6 Fe1 $C8$	40.55 (0) 68 20 (8)	Eal C6 H6	126.00
$C6$ F_{21} $C0$	67.92(8)	C7 C6 H6	126.00
C6 = Fc1 = C10	07.05 (0)	$C_{10} C_{6} H_{6}$	120.00
$C_0 = F_0 = C_1 O$	40.20 (8)	$C_{10} - C_{0} - H_{0}$	120.00
C/-FeI-C8	40.07 (8)	FeIC/H/	126.00
C/—FeI—C9	68.10 (8)		126.00
C/-Fel-Clo	68.08 (8)	C8 - C/ - H/	126.00
C8—Fe1—C9	40.54 (8)	Fel—C8—H8	126.00
C8—Fe1—C10	68.19 (8)	С7—С8—Н8	126.00
C9—Fe1—C10	40.38 (8)	С9—С8—Н8	126.00
C2—P1—C12	101.60 (8)	Fe1—C9—H9	126.00
C2—P1—C18	100.75 (8)	С8—С9—Н9	126.00
C12—P1—C18	98.19 (8)	С10—С9—Н9	126.00
C11—O2—C24	115.87 (14)	Fe1—C10—H10	126.00
Fel—C1—C2	69.59 (10)	С6—С10—Н10	126.00
Fe1—C1—C5	70.17 (10)	С9—С10—Н10	126.00

Fe1—C1—C11	126.14 (13)	C12—C13—H13	120.00
C2—C1—C5	108.26 (15)	C14—C13—H13	120.00
C2—C1—C11	125.84 (15)	C13—C14—H14	120.00
C5—C1—C11	125.90 (16)	C15—C14—H14	120.00
Fe1—C2—P1	122.04 (9)	C14—C15—H15	120.00
Fe1—C2—C1	68.77 (10)	С16—С15—Н15	120.00
Fe1—C2—C3	69.91 (10)	С15—С16—Н16	120.00
P1—C2—C1	125.45 (12)	C17—C16—H16	120.00
P1—C2—C3	128.17 (14)	С12—С17—Н17	120.00
C1—C2—C3	106.18 (15)	С16—С17—Н17	120.00
Fe1—C3—C2	69.03 (10)	С18—С19—Н19	120.00
Fe1—C3—C4	70.45 (11)	С20—С19—Н19	120.00
C2-C3-C4	109.07 (15)	C19—C20—H20	120.00
Fe1-C4-C3	69.24 (11)	C21—C20—H20	120.00
Fe1—C4—C5	69.29 (10)	C_{20} C_{21} H_{21}	120.00
$C_{3}-C_{4}-C_{5}$	10848(15)	$C_{22} = C_{21} = H_{21}$	120.00
Fe1—C5—C1	68 61 (10)	C21—C22—H22	120.00
Fe1 - C5 - C4	70.66 (11)	C_{23} C_{22} H_{22}	120.00
C1 - C5 - C4	108.00 (16)	C18 - C23 - H23	120.00
Fe1 - C6 - C7	69 17 (12)	C_{22} C_{23} H_{23}	120.00
Fe1 - C6 - C10	70.09(12)	$\Omega^2 - C^2 4 - H^2 4 A$	109.00
C7-C6-C10	108 11 (17)	Ω^2 C^24 H^24B	109.00
Fe1 - C7 - C6	70.30(12)	02 - C24 - H24C	109.00
Fe1 - C7 - C8	69.83 (11)	$H_{24} = C_{24} = H_{24B}$	109.00
C6-C7-C8	108 16 (17)	H24A - C24 - H24C	110.00
Fe1 - C8 - C7	69 50 (11)	H24B - C24 - H24C	109.00
	09.50 (11)		109.00
C2—Fe1—C1—C5	-119.32 (14)	C2—Fe1—C8—C9	149.66 (11)
C2—Fe1—C1—C11	120.12 (19)	C3—Fe1—C8—C7	-135.19 (12)
C3—Fe1—C1—C2	38.73 (10)	C3—Fe1—C8—C9	106.12 (12)
C3—Fe1—C1—C5	-80.58 (11)	C4—Fe1—C8—C7	-173.40 (11)
C3—Fe1—C1—C11	158.85 (17)	C4—Fe1—C8—C9	67.91 (15)
C4—Fe1—C1—C2	82.19 (11)	C6—Fe1—C8—C7	37.77 (12)
C4—Fe1—C1—C5	-37.13 (11)	C6—Fe1—C8—C9	-80.93 (13)
C4—Fe1—C1—C11	-157.69 (17)	C7—Fe1—C8—C9	-118.70 (17)
C5—Fe1—C1—C2	119.32 (14)	C9—Fe1—C8—C7	118.70 (17)
C5—Fe1—C1—C11	-120.57 (19)	C10—Fe1—C8—C7	81.30 (12)
C6—Fe1—C1—C2	-132.83 (10)	C10—Fe1—C8—C9	-37.40 (12)
C6—Fe1—C1—C5	107.86 (11)	C2—Fe1—C9—C8	-53.32 (18)
C6—Fe1—C1—C11	-12.71 (17)	C2—Fe1—C9—C10	-172.81 (12)
C7—Fe1—C1—C2	-88.80 (11)	C3—Fe1—C9—C8	-89.67 (13)
C7—Fe1—C1—C5	151.88 (11)	C3—Fe1—C9—C10	150.84 (11)
C7—Fe1—C1—C11	31.32 (17)	C4—Fe1—C9—C8	-132.66 (12)
C8—Fe1—C1—C2	-51.10 (17)	C4—Fe1—C9—C10	107.85 (12)
C8—Fe1—C1—C5	-170.41 (13)	C5—Fe1—C9—C8	-170.83 (12)
C8—Fe1—C1—C11	69.0 (2)	C5—Fe1—C9—C10	69.68 (15)
C10—Fe1—C1—C2	-172.79 (10)	C6—Fe1—C9—C8	81.92 (13)
C10—Fe1—C1—C5	67.89 (14)	C6—Fe1—C9—C10	-37.58 (12)

C10—Fe1—C1—C11	-52.67 (19)	C7—Fe1—C9—C8	38.04 (12)
C1—Fe1—C2—P1	-119.40 (15)	C7—Fe1—C9—C10	-81.46 (12)
C1—Fe1—C2—C3	117.41 (14)	C8—Fe1—C9—C10	-119.49 (17)
C3—Fe1—C2—P1	123.19 (16)	C10—Fe1—C9—C8	119.49 (17)
C3—Fe1—C2—C1	-117.41 (14)	C1—Fe1—C10—C6	68.19 (15)
C4—Fe1—C2—P1	159.87 (13)	C1—Fe1—C10—C9	-172.69 (11)
C4—Fe1—C2—C1	-80.73 (11)	C3—Fe1—C10—C6	-171.06 (13)
C4—Fe1—C2—C3	36.68 (11)	C3—Fe1—C10—C9	-51.93 (18)
C5—Fe1—C2—P1	-157.19 (13)	C4—Fe1—C10—C6	151.95 (12)
C5—Fe1—C2—C1	-37.79(10)	C4—Fe1—C10—C9	-88.93 (13)
C5—Fe1—C2—C3	79.62 (11)	C5—Fe1—C10—C6	108.73 (12)
C6—Fe1—C2—P1	-48.55 (16)	C5—Fe1—C10—C9	-132.15(12)
C6-Fe1-C2-C1	70.85 (13)	C6—Fe1—C10—C9	119.12 (17)
C6-Fe1-C2-C3	-171.74(11)	C7-Fe1-C10-C6	-37.59(12)
C7-Fe1-C2-P1	-10.52(13)	C7—Fe1—C10—C9	81.53 (12)
C7-Fe1-C2-C1	108.88 (11)	C8—Fe1—C10—C6	-81.57(13)
C7-Fe1-C2-C3	-13371(11)	C8 - Fe1 - C10 - C9	37 55 (12)
C8 - Fe1 - C2 - P1	32.86 (13)	C9-Fe1-C10-C6	-11912(17)
C8 - Fe1 - C2 - C1	152.26 (11)	C12— $P1$ — $C2$ — $Fe1$	178 79 (10)
C8 - Fe1 - C2 - C3	-90.33(12)	C_{12} P_{1} C_{2} C_{1}	93 31 (16)
C9-Fe1-C2-P1	67.43 (16)	C12 - P1 - C2 - C3	-92.55(17)
C9-Fe1-C2-C1	-173.17(12)	C18 - P1 - C2 - Fe1	-80.43(12)
C9-Fe1-C2-C3	-55.76 (16)	C18 - P1 - C2 - C1	-165.91(15)
C1—Fe1—C3—C2	-39.27(10)	C18 - P1 - C2 - C3	8.23 (18)
C1—Fe1—C3—C4	81.23 (11)	$C_2 = P_1 = C_{12} = C_{13}$	173.55 (14)
C2—Fe1—C3—C4	120.50 (15)	$C_2 - P_1 - C_{12} - C_{17}$	-6.04(18)
C4—Fe1—C3—C2	-120.50(15)	C18 - P1 - C12 - C13	70.72 (15)
C5-Fe1-C3-C2	-83.75(11)	C18 - P1 - C12 - C17	-108.86(16)
C5-Fe1-C3-C4	36.75 (11)	C_{2} P1 - C18 - C19	113.07 (16)
C7—Fe1—C3—C2	67.35 (14)	$C_2 - P_1 - C_{18} - C_{23}$	-69.12(17)
C7-Fe1-C3-C4	-172.15(11)	$C_1^2 = P_1^2 = C_1^2 = C_1^2$	-14339(16)
C8—Fe1—C3—C2	105.54 (12)	C12 - P1 - C18 - C23	34.41 (17)
C8-Fe1-C3-C4	-133.96(12)	$C_{24} = 0^{2} = C_{11} = 0^{1}$	-1.7(3)
C9-Fe1-C3-C2	148 52 (11)	$C_{24} = 0^{2} = C_{11} = C_{11}$	176 49 (16)
C9-Fe1-C3-C4	-90.98(12)	Fe1-C1-C2-P1	114 97 (13)
C10—Fe1—C3—C2	-177.65(13)	Fe1-C1-C2-C3	-60.24(12)
C10—Fe1—C3—C4	-57.15(17)	C5-C1-C2-Fel	59.74 (12)
C1—Fe1—C4—C3	-82.20(11)	$C_{2} = C_{1} = C_{2} = P_{1}$	174 71 (13)
C1—Fe1—C4—C5	38 18 (11)	$C_{5} - C_{1} - C_{2} - C_{3}$	-0.5(2)
C^2 —Fel—C4—C3	-37.33(11)	$C_{11} = C_{12} = C_{22} = C_{23}$	-12049(18)
C_{2} Fe1—C4—C5	83.05 (11)	$C_{11} - C_{1} - C_{2} - P_{1}$	-55(3)
C_{3} —Fe1—C4—C5	120 38 (15)	$C_{11} - C_{1} - C_{2} - C_{3}$	179 27 (17)
C_{5} Fe1— C_{4} — C_{3}	-120.38(15)	Fe1-C1-C5-C4	59 91 (13)
C6-Fe1-C4-C3	-17745(14)	C_2 — C_1 — C_5 —Fel	-59.37(12)
C6-Fe1-C4-C5	-57 07 (18)	$C_2 - C_1 - C_5 - C_4$	05(2)
C8—Fe1—C4—C3	65 71 (14)	$C_1 - C_1 - C_5 - F_{e_1}$	120 86 (18)
C8—Fe1—C4—C5	-173.91 (11)	$C_{11} - C_{1} - C_{5} - C_{4}$	-179.23(17)
C9-Fe1-C4-C3	105 12 (12)	Fe1-C1-C11-O1	-102.1(2)

C9—Fe1—C4—C5	-134.50 (11)	Fe1—C1—C11—O2	79.71 (18)
C10—Fe1—C4—C3	148.17 (11)	C2-C1-C11-O1	-12.5 (3)
C10—Fe1—C4—C5	-91.45 (12)	C2-C1-C11-O2	169.40 (16)
C1—Fe1—C5—C4	-119.29 (15)	C5-C1-C11-O1	167.28 (19)
C2—Fe1—C5—C1	38.17 (10)	C5-C1-C11-O2	-10.9 (2)
C2—Fe1—C5—C4	-81.13 (11)	Fe1—C2—C3—C4	-59.22 (13)
C3—Fe1—C5—C1	82.31 (11)	P1-C2-C3-Fe1	-115.54 (14)
C3—Fe1—C5—C4	-36.99 (11)	P1—C2—C3—C4	-174.76 (14)
C4—Fe1—C5—C1	119.29 (15)	C1—C2—C3—Fe1	59.50 (12)
C6—Fe1—C5—C1	-91.24 (12)	C1—C2—C3—C4	0.3 (2)
C6—Fe1—C5—C4	149.47 (11)	Fe1—C3—C4—C5	-58.30 (13)
C7—Fe1—C5—C1	-54.20 (18)	C2—C3—C4—Fe1	58.35 (13)
C7—Fe1—C5—C4	-173.49 (14)	C2—C3—C4—C5	0.1 (2)
C9—Fe1—C5—C1	-175.02 (11)	Fe1—C4—C5—C1	-58.63 (13)
C9—Fe1—C5—C4	65.68 (14)	C3—C4—C5—Fe1	58.27 (13)
C10—Fe1—C5—C1	-134.72 (11)	C3—C4—C5—C1	-0.4 (2)
C10—Fe1—C5—C4	105.98 (12)	Fe1—C6—C7—C8	59.81 (14)
C1—Fe1—C6—C7	106.25 (12)	C10-C6-C7-Fe1	-59.48 (14)
C1—Fe1—C6—C10	-134.30 (11)	C10—C6—C7—C8	0.3 (2)
C2—Fe1—C6—C7	64.04 (15)	Fe1—C6—C10—C9	-59.21 (14)
C2—Fe1—C6—C10	-176.51 (11)	C7-C6-C10-Fe1	58.91 (14)
C4—Fe1—C6—C7	-171.54 (13)	C7—C6—C10—C9	-0.3 (2)
C4—Fe1—C6—C10	-52.09 (19)	Fe1—C7—C8—C9	59.88 (14)
C5—Fe1—C6—C7	151.09 (11)	C6-C7-C8-Fe1	-60.11 (14)
C5—Fe1—C6—C10	-89.47 (13)	C6—C7—C8—C9	-0.2 (2)
C7—Fe1—C6—C10	119.45 (17)	Fe1-C8-C9-C10	59.59 (14)
C8—Fe1—C6—C7	-37.90 (12)	C7—C8—C9—Fe1	-59.56 (13)
C8—Fe1—C6—C10	81.55 (13)	C7—C8—C9—C10	0.0 (2)
C9—Fe1—C6—C7	-81.78 (12)	Fe1-C9-C10-C6	59.32 (14)
C9—Fe1—C6—C10	37.67 (12)	C8-C9-C10-Fe1	-59.15 (14)
C10—Fe1—C6—C7	-119.45 (17)	C8—C9—C10—C6	0.2 (2)
C1—Fe1—C7—C6	-92.09 (12)	P1-C12-C13-C14	-177.91 (14)
C1—Fe1—C7—C8	148.96 (11)	C17—C12—C13—C14	1.7 (3)
C2—Fe1—C7—C6	-136.55 (11)	P1-C12-C17-C16	178.41 (15)
C2—Fe1—C7—C8	104.49 (12)	C13—C12—C17—C16	-1.2 (3)
C3—Fe1—C7—C6	-176.28 (11)	C12—C13—C14—C15	-0.9 (3)
C3—Fe1—C7—C8	64.77 (15)	C13-C14-C15-C16	-0.6 (3)
C5—Fe1—C7—C6	-55.55 (19)	C14-C15-C16-C17	1.1 (3)
C5—Fe1—C7—C8	-174.50 (14)	C15—C16—C17—C12	-0.2 (3)
C6—Fe1—C7—C8	-118.95 (16)	P1-C18-C19-C20	178.32 (16)
C8—Fe1—C7—C6	118.95 (16)	C23-C18-C19-C20	0.4 (3)
C9—Fe1—C7—C6	81.04 (13)	P1-C18-C23-C22	-177.83 (16)
C9—Fe1—C7—C8	-37.92 (12)	C19—C18—C23—C22	0.0 (3)
C10—Fe1—C7—C6	37.36 (11)	C18—C19—C20—C21	0.0 (3)
C10—Fe1—C7—C8	-81.59 (12)	C19—C20—C21—C22	-0.9 (3)
C1—Fe1—C8—C7	-57.39 (18)	C20—C21—C22—C23	1.3 (3)
C1—Fe1—C8—C9	-176.09 (13)	C21—C22—C23—C18	-0.8 (3)
C2—Fe1—C8—C7	-91.65 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4···O1 ⁱ	0.93	2.58	3.184 (2)	123
C15—H15…O1 ⁱⁱ	0.93	2.58	3.494 (3)	167

Symmetry codes: (i) -*x*+1/2, -*y*, *z*+1/2; (ii) *x*-1/2, -*y*-1/2, -*z*+1.