

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ_2 -4,4'-bipyridine- $\kappa^2 N:N'$)bis-(μ_4 -cyclohexane-1,3-dicarboxylato- $\kappa^4 O:O':O'':O'''$)dizinc(II)]

Mohd. Razali Rizal and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 31 August 2009; accepted 1 September 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.050; wR factor = 0.123; data-to-parameter ratio = 11.8.

The cyclohexane-1,3-dicarboxylate dianion in the title threedimensional coordination polymer, $[Zn_2(C_8H_{10}O_4)_2 (C_{10}H_8N_2)]_n$, has one carboxylate group in an equatorial position and the other in an axial position of the cyclohexane ring, which adopts a chair conformation. The carboxylate groups function as bridges to two adjacent Zn^{II} atoms, generating a layer motif. Adjacent layers are linked through the 4,4'-bipyridine N-heterocycle, forming a three-dimensional network; the geometry of Zn^{II} is square-pyramidal with the N atom of the N-heterocycle occupying the apical position. The N-heterocycle lies about a center of inversion and is disordered in a 1:1 ratio with respect to the C atoms bearing H atoms.

Related literature

For the zinc cyclohexane-1,3-dicarboxylate adduct of 1,10-phenanthroline, see: Bailey *et al.* (2008).

Experimental

Crystal data

 $\begin{bmatrix} Zn_2(C_8H_{10}O_4)_2(C_{10}H_8N_2) \end{bmatrix}$ $M_r = 313.64$ Monoclinic, C2/c a = 22.251 (2) Å b = 13.436 (1) Å c = 8.552 (1) Å $\beta = 104.446$ (5)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.557, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.123$ S = 0.992175 reflections 184 parameters $V = 2475.8 \text{ (3) } \text{\AA}^{3}$ Z = 8 Mo K\alpha radiation $\mu = 1.99 \text{ mm}^{-1}$ T = 100 K 0.12 \times 0.02 \times 0.02 mm

8536 measured reflections 2175 independent reflections 1407 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.116$

36 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.77$ e Å^{-3} $\Delta \rho_{\rm min} = -0.65$ e Å^{-3}

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XSHELL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2535).

References

Bailey, A. J., Lee, C., Feller, R. K., Orton, J. B., Mellot-Draznieks, C., Slater, B., Harrison, W. T. A., Simoncic, P., Navrotsky, A., Grossel, M. C. & Cheetham, A. K. (2008). Angew. Chem. Int. Ed. 47, 8634–8637.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m1179 [doi:10.1107/S1600536809035168]

Poly[(μ_2 -4,4'-bipyridine- $\kappa^2 N$:N')bis(μ_4 -cyclohexane-1,3-dicarboxylato- $\kappa^4 O$:O':O'':O''')dizinc(II)]

Mohd. Razali Rizal and Seik Weng Ng

S1. Experimental

Zinc acetate (0.15 g, 0.76 mmol), cyclohexane-1,3-dicarboxylic acid (mixture of *cis*- and *trans*-isomers) (0.13 g, 0.76 mmol) and 4,4'-bipyridine (0.12 g, 0.76 mmol) along with water (18 ml) were heated in a 23-ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 403 K for 3 days. The bomb was cooled to room temperature at 5 K per hour. Tiny crystals were isolated from the solution.

S2. Refinement

Hydrogen atoms were included in the refinement in the riding model approximation with C–H 0.95–1.00 Å, and with $U(H) 1.2U_{eq}(C)$. The 4,4'-bipyridine N-heterocycle is disordered about a center-of-inversion with respect to the carbon atoms bearing a hydrogen atom. As the disordered refined to nearly 50:50, the occupancy was fixed as 0.5. The distances of pairs of atoms were restrained to within 0.01 Å, and the pyridyl ring was restrained to near planarity. The displacement factors of the primed atoms were given those of the unprimed ones; the anisotropic behavior was restrained to be nearly isotropic.

Figure 1

50% Probability displacement ellipsoid plot of the asymmetric unit of $Zn_2(C_{10}H_8N_2)(C_8H_{10}O_4)_2$ extended to show the coordination environment of the zinc center and a full molecule of 4,4'-bipyridine. Hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry operations i: 0.5-x, 1.5-y, 1-z; ii: 0.5-x, 0.5+y, 0.5-z; iii: x, 1-y, 0.5+z.

Poly[(μ_2 -4,4'-bipyridine- $\kappa^2 N:N'$)bis(μ_4 -cyclohexane- 1,3-dicarboxylato- $\kappa^4 O:O':O'':O'''$)dizinc(II)]

Crystal data	
$[Zn_2(C_8H_{10}O_4)_2(C_{10}H_8N_2)]$	$\beta = 104.446 \ (5)^{\circ}$
$M_r = 313.64$	V = 2475.8 (3) Å ³
Monoclinic, $C2/c$	Z = 8
Hall symbol: -C 2yc	F(000) = 1288
a = 22.251 (2) Å	$D_{\rm x} = 1.683 {\rm ~Mg} {\rm ~m}^{-3}$
b = 13.436(1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 8.552 (1) Å	Cell parameters from 543 reflections

 $\theta = 2.8 - 21.0^{\circ}$ $\mu = 1.99 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.557, \ T_{\max} = 1.000$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta ho_{ m max} = 0.77 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Prism, colorless

 $R_{\rm int} = 0.116$

 $k = -15 \rightarrow 15$ $l = -10 \rightarrow 10$

 $0.12 \times 0.02 \times 0.02 \text{ mm}$

8536 measured reflections 2175 independent reflections 1407 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ $h = -26 \rightarrow 25$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn1	0.30423 (3)	0.80190 (5)	0.58500 (8)	0.0148 (2)	
01	0.33841 (19)	0.7868 (3)	0.3855 (5)	0.0226 (10)	
O2	0.25270 (18)	0.7072 (3)	0.2612 (4)	0.0220 (10)	
O3	0.24532 (18)	0.4228 (3)	0.0174 (4)	0.0192 (9)	
O4	0.33149 (18)	0.3418 (3)	0.1412 (5)	0.0196 (10)	
N1	0.3745 (2)	0.8727 (3)	0.7432 (5)	0.0157 (11)	
C1	0.3081 (3)	0.7349 (4)	0.2723 (7)	0.0182 (14)	
C2	0.3373 (3)	0.7034 (4)	0.1370 (7)	0.0190 (13)	
H2	0.3281	0.7563	0.0521	0.023*	
C3	0.4082 (3)	0.6950 (4)	0.1978 (7)	0.0207 (13)	
H3A	0.4265	0.6834	0.1052	0.025*	
H3B	0.4252	0.7581	0.2503	0.025*	
C4	0.4259 (3)	0.6096 (4)	0.3182 (7)	0.0218 (14)	
H4A	0.4716	0.6040	0.3530	0.026*	
H4B	0.4104	0.6239	0.4148	0.026*	
C5	0.3985 (3)	0.5113 (4)	0.2433 (7)	0.0232 (15)	
H5A	0.4182	0.4929	0.1556	0.028*	
H5B	0.4080	0.4584	0.3263	0.028*	
C6	0.3287 (3)	0.5179 (4)	0.1755 (7)	0.0183 (14)	
H6	0.3108	0.5325	0.2693	0.022*	
C7	0.3106 (3)	0.6056 (4)	0.0586 (7)	0.0194 (14)	
H7A	0.3261	0.5935	-0.0386	0.023*	

H7B	0.2648	0.6107	0.0240	0.023*	
C8	0.3000 (3)	0.4193 (4)	0.1038 (7)	0.0180 (14)	
C9	0.4299 (6)	0.8277 (15)	0.8020 (17)	0.015 (3)	0.50
Н9	0.4346	0.7607	0.7715	0.019*	0.50
C10	0.4800 (11)	0.8744 (6)	0.9043 (19)	0.022 (3)	0.50
H10	0.5181	0.8400	0.9432	0.027*	0.50
C9′	0.4219 (6)	0.8212 (16)	0.8385 (15)	0.015 (3)	0.50
H9′	0.4213	0.7506	0.8346	0.019*	0.50
C10′	0.4713 (10)	0.8691 (6)	0.942 (2)	0.022 (3)	0.50
H10′	0.5040	0.8311	1.0076	0.027*	0.50
C11	0.4734 (2)	0.9726 (4)	0.9490 (6)	0.0155 (13)	
C12	0.4164 (6)	1.0188 (15)	0.8894 (17)	0.016 (3)	0.50
H12	0.4102	1.0856	0.9184	0.019*	0.50
C13	0.3687 (11)	0.9669 (6)	0.7878 (19)	0.014 (2)	0.50
H13	0.3301	0.9996	0.7477	0.017*	0.50
C12′	0.4238 (6)	1.0236 (16)	0.8504 (16)	0.016 (3)	0.50
H12′	0.4230	1.0943	0.8524	0.019*	0.50
C13′	0.3758 (10)	0.9721 (6)	0.750 (2)	0.014 (2)	0.50
H13′	0.3425	1.0085	0.6828	0.017*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0119 (4)	0.0150 (4)	0.0150 (3)	-0.0020 (3)	-0.0011 (2)	-0.0008 (3)
01	0.027 (2)	0.021 (2)	0.021 (2)	-0.0065 (19)	0.0087 (19)	-0.0056 (18)
O2	0.019 (2)	0.030 (3)	0.017 (2)	-0.002(2)	0.0051 (18)	-0.0029 (18)
O3	0.011 (2)	0.018 (2)	0.023 (2)	0.0018 (18)	-0.0065 (19)	0.0021 (18)
O4	0.021 (3)	0.013 (2)	0.021 (2)	0.0026 (18)	-0.0026 (19)	-0.0014 (17)
N1	0.016 (3)	0.018 (3)	0.013 (2)	0.001 (2)	0.003 (2)	-0.003 (2)
C1	0.024 (4)	0.008 (3)	0.022 (3)	0.000 (2)	0.005 (3)	0.002 (2)
C2	0.023 (3)	0.017 (3)	0.016 (3)	0.000 (3)	0.004 (3)	-0.002 (3)
C3	0.017 (3)	0.020 (3)	0.025 (3)	-0.004 (3)	0.006 (3)	-0.005 (3)
C4	0.017 (4)	0.027 (4)	0.020 (3)	0.003 (3)	0.004 (3)	-0.005 (3)
C5	0.020 (4)	0.021 (3)	0.027 (4)	0.000 (3)	0.003 (3)	0.000 (3)
C6	0.015 (4)	0.017 (3)	0.021 (3)	-0.002 (3)	0.000 (3)	0.002 (3)
C7	0.024 (4)	0.019 (3)	0.014 (3)	-0.001 (3)	0.003 (3)	-0.003 (2)
C8	0.026 (4)	0.015 (3)	0.013 (3)	-0.001 (3)	0.005 (3)	0.001 (3)
C9	0.025 (5)	0.013 (4)	0.011 (6)	-0.001 (4)	0.008 (4)	0.005 (4)
C10	0.018 (6)	0.022 (4)	0.022 (7)	0.000 (3)	-0.004 (4)	0.007 (3)
C9′	0.025 (5)	0.013 (4)	0.011 (6)	-0.001 (4)	0.008 (4)	0.005 (4)
C10′	0.018 (6)	0.022 (4)	0.022 (7)	0.000 (3)	-0.004 (4)	0.007 (3)
C11	0.010 (3)	0.021 (3)	0.013 (3)	-0.002 (3)	-0.001 (3)	-0.001 (2)
C12	0.015 (4)	0.017 (3)	0.017 (6)	-0.002 (3)	0.009 (4)	-0.006 (4)
C13	0.008 (5)	0.018 (3)	0.015 (7)	0.001 (3)	0.000 (4)	-0.002 (3)
C12′	0.015 (4)	0.017 (3)	0.017 (6)	-0.002 (3)	0.009 (4)	-0.006 (4)
C13′	0.008 (5)	0.018 (3)	0.015 (7)	0.001 (3)	0.000 (4)	-0.002(3)

Geometric parameters (Å, °)

Zn1—O1	2.044 (4)	C4—H4B	0.9900
Zn1—O2 ⁱ	2.045 (4)	С5—С6	1.519 (8)
Zn1—O3 ⁱⁱ	2.034 (4)	C5—H5A	0.9900
Zn1—O4 ⁱⁱⁱ	2.044 (4)	С5—Н5В	0.9900
Zn1—N1	2.031 (5)	C6—C8	1.532 (8)
Zn1—Zn1 ⁱ	2.8517 (13)	C6—C7	1.533 (7)
01—C1	1.246 (7)	С6—Н6	1.0000
O2—C1	1.267 (7)	С7—Н7А	0.9900
O2—Zn1 ⁱ	2.045 (4)	С7—Н7В	0.9900
O3—C8	1.257 (7)	C9—C10	1.384 (10)
O3—Zn1 ^{iv}	2.034 (4)	С9—Н9	0.9500
O4—C8	1.252 (7)	C10—C11	1.392 (10)
O4—Zn1 ^v	2.044 (4)	C10—H10	0.9500
N1—C13′	1.338 (9)	C9'—C10'	1.385 (10)
N1—C13	1.338 (9)	С9'—Н9'	0.9500
N1—C9′	1.351 (9)	C10′—C11	1.393 (10)
N1—C9	1.351 (9)	C10'—H10'	0.9500
C1—C2	1.522 (8)	C11—C12′	1.390 (10)
C2—C7	1.526 (7)	C11—C12	1.391 (10)
C2—C3	1.537 (8)	C11—C11 ^{vi}	1.478 (11)
С2—Н2	1.0000	C12—C13	1.380 (10)
C3—C4	1.526 (8)	C12—H12	0.9500
С3—НЗА	0.9900	C13—H13	0.9500
С3—Н3В	0.9900	C12'—C13'	1.380 (10)
C4—C5	1.526 (8)	C12'—H12'	0.9500
C4—H4A	0.9900	C13'—H13'	0.9500
N1—Zn1—O3 ⁱⁱ	99.06 (17)	С6—С5—Н5В	109.2
N1—Zn1—O2 ⁱ	95.55 (16)	C4—C5—H5B	109.2
$O3^{ii}$ —Zn1— $O2^{i}$	88.19 (16)	H5A—C5—H5B	107.9
N1—Zn1—O1	102.59 (16)	C5—C6—C8	112.8 (5)
O3 ⁱⁱ —Zn1—O1	89.70 (15)	C5—C6—C7	111.8 (5)
O2 ⁱ —Zn1—O1	161.85 (15)	C8—C6—C7	112.9 (5)
N1—Zn1—O4 ⁱⁱⁱ	98.71 (17)	С5—С6—Н6	106.3
O3 ⁱⁱ —Zn1—O4 ⁱⁱⁱ	162.21 (15)	С8—С6—Н6	106.3
O2 ⁱ —Zn1—O4 ⁱⁱⁱ	89.29 (16)	С7—С6—Н6	106.3
O1—Zn1—O4 ⁱⁱⁱ	87.23 (15)	C2—C7—C6	111.4 (5)
$N1$ — $Zn1$ — $Zn1^i$	169.00 (12)	C2—C7—H7A	109.3
$O3^{ii}$ —Zn1—Zn1 ⁱ	82.66 (11)	С6—С7—Н7А	109.3
$O2^{i}$ —Zn1—Zn1 ⁱ	73.59 (11)	С2—С7—Н7В	109.3
$O1$ — $Zn1$ — $Zn1^i$	88.25 (12)	С6—С7—Н7В	109.3
$O4^{iii}$ —Zn1—Zn1 ⁱ	79.73 (11)	H7A—C7—H7B	108.0
C1—O1—Zn1	117.5 (4)	O4—C8—O3	125.4 (5)
C1—O2—Zn1 ⁱ	135.7 (4)	O4—C8—C6	117.8 (5)
C8—O3—Zn1 ^{iv}	124.3 (4)	O3—C8—C6	116.7 (5)
C8—O4—Zn1 ^v	127.7 (4)	N1—C9—C10	123 (2)

C13'—N1—C9'	118.7 (15)	N1—C9—H9	118.4
C13—N1—C9′	115.4 (14)	С10—С9—Н9	118.4
C13′—N1—C9	115.0 (15)	C9—C10—C11	119 (2)
C13—N1—C9	117.4 (15)	С9—С10—Н10	120.6
C13′—N1—Zn1	120.0 (11)	C11—C10—H10	120.6
C13—N1—Zn1	121.4 (11)	N1—C9′—C10′	122 (2)
C9′—N1—Zn1	121.2 (11)	N1—C9′—H9′	119.2
C9—N1—Zn1	121.2 (11)	С10'—С9'—Н9'	119.2
O1—C1—O2	123.4 (5)	C9′—C10′—C11	120 (2)
01-C1-C2	119.6 (5)	C9'—C10'—H10'	119.8
O2—C1—C2	116.9 (5)	C11—C10′—H10′	119.8
C7—C2—C1	112.3 (5)	C12′—C11—C10	115.0 (14)
C7—C2—C3	109.8 (5)	C12—C11—C10	118.1 (14)
C1—C2—C3	111.1 (5)	C12'-C11-C10'	116.8 (14)
C7—C2—H2	107.8	C12—C11—C10′	114.3 (14)
C1—C2—H2	107.8	C12′—C11—C11 ^{vi}	120.7(12)
C3—C2—H2	107.8	$C12-C11-C11^{vi}$	121.1(12)
C4-C3-C2	110.7 (5)	$C10-C11-C11^{vi}$	120.7(12)
C4—C3—H3A	109 5	$C10'-C11-C11^{vi}$	122.5(11)
C2—C3—H3A	109.5	C13 - C12 - C11	120 (2)
C4—C3—H3B	109.5	C13—C12—H12	120 (2)
C2—C3—H3B	109.5	C11—C12—H12	120.2
H3A—C3—H3B	108.1	N1-C13-C12	123 (2)
C5—C4—C3	111.0 (5)	N1-C13-H13	118.5
C5—C4—H4A	109.4	C12—C13—H13	118.5
C3—C4—H4A	109.4	C13'—C12'—C11	120 (2)
C5—C4—H4B	109.4	C13'—C12'—H12'	119.8
C3—C4—H4B	109.4	C11—C12′—H12′	119.8
H4A—C4—H4B	108.0	N1—C13′—C12′	122 (2)
C6—C5—C4	111.9 (5)	N1—C13′—H13′	118.9
С6—С5—Н5А	109.2	C12'—C13'—H13'	118.9
С4—С5—Н5А	109.2		
N1—Zn1—O1—C1	171.8 (4)	C3—C2—C7—C6	56.6 (6)
O3 ⁱⁱ —Zn1—O1—C1	-89.0 (4)	C5—C6—C7—C2	-54.5 (6)
O2 ⁱ —Zn1—O1—C1	-5.7 (7)	C8—C6—C7—C2	177.0 (5)
$O4^{iii}$ —Zn1—O1—C1	73.5 (4)	Zn1 ^v O4C8O3	-3.1(8)
Zn1 ⁱ —Zn1—O1—C1	-6.3 (4)	Zn1 ^v O4C6C6	173.7 (3)
O3 ⁱⁱ —Zn1—N1—C13′	-0.6 (6)	Zn1 ^{iv} —O3—C8—O4	-0.9 (8)
O2 ⁱ —Zn1—N1—C13′	-89.7 (6)	Zn1 ^{iv} —O3—C8—C6	-177.8 (3)
O1—Zn1—N1—C13′	91.1 (6)	C5—C6—C8—O4	16.7 (7)
O4 ⁱⁱⁱ —Zn1—N1—C13′	-179.8 (6)	C7—C6—C8—O4	144.6 (5)
$Zn1^{i}$ — $Zn1$ — $N1$ — $C13'$	-98.8 (9)	C5—C6—C8—O3	-166.2 (5)
O3 ⁱⁱ —Zn1—N1—C13	19.4 (6)	C7—C6—C8—O3	-38.3 (7)
O2 ⁱ —Zn1—N1—C13	-69.6 (6)	C13′—N1—C9—C10	19.0 (10)
O1—Zn1—N1—C13	111.2 (6)	C13—N1—C9—C10	-0.1 (3)
O4 ⁱⁱⁱ —Zn1—N1—C13	-159.8 (6)	Zn1—N1—C9—C10	177.0 (3)
Zn1 ⁱ —Zn1—N1—C13	-78.8 (10)	N1-C9-C10-C11	-0.2 (3)

$O3^{n}$ —Zn1—N1—C9′	-177.8 (6)	C13'—N1—C9'—C10'	-0.1(3)
$O2^{i}$ —Zn1—N1—C9'	93.2 (6)	Zn1—N1—C9'—C10'	177.1 (3)
O1—Zn1—N1—C9'	-86.0 (6)	N1—C9′—C10′—C11	-0.3 (3)
O4 ⁱⁱⁱ —Zn1—N1—C9′	3.0 (6)	C9—C10—C11—C12′	-18.2 (11)
Zn1 ⁱ —Zn1—N1—C9′	84.0 (9)	C9—C10—C11—C12	0.6 (6)
O3 ⁱⁱ —Zn1—N1—C9	-157.6 (6)	C9—C10—C11—C10′	82 (6)
$O2^{i}$ —Zn1—N1—C9	113.4 (6)	C9-C10-C11-C11 ^{vi}	-176.8 (5)
O1—Zn1—N1—C9	-65.9 (6)	C9'—C10'—C11—C12'	0.7 (6)
$O4^{iii}$ —Zn1—N1—C9	23.2 (6)	C9'—C10'—C11—C12	19.4 (10)
Zn1 ⁱ —Zn1—N1—C9	104.2 (9)	C9'—C10'—C11—C10	-87 (6)
Zn1—O1—C1—O2	13.7 (8)	C9'-C10'-C11-C11 ^{vi}	-177.0 (6)
Zn1—O1—C1—C2	-167.4 (4)	C10-C11-C12-C13	-0.6 (8)
Zn1 ⁱ —O2—C1—O1	-16.9 (9)	C10′—C11—C12—C13	-19.4 (12)
Zn1 ⁱ —O2—C1—C2	164.2 (4)	C11 ^{vi} —C11—C12—C13	176.7 (7)
O1—C1—C2—C7	152.2 (5)	C13'—N1—C13—C12	-86 (7)
O2—C1—C2—C7	-28.9 (7)	C9'—N1—C13—C12	19.2 (12)
O1—C1—C2—C3	28.7 (7)	C9—N1—C13—C12	0.1 (7)
O2—C1—C2—C3	-152.3 (5)	Zn1—N1—C13—C12	-177.0 (5)
C7—C2—C3—C4	-58.1 (6)	C11—C12—C13—N1	0.3 (9)
C1—C2—C3—C4	66.7 (6)	C10'—C11—C12'—C13'	-0.8 (8)
C2—C3—C4—C5	57.2 (6)	C11 ^{vi} —C11—C12′—C13′	176.9 (6)
C3—C4—C5—C6	-54.6 (7)	C9'—N1—C13'—C12'	0.0 (7)
C4—C5—C6—C8	-178.4 (5)	Zn1—N1—C13'—C12'	-177.3 (5)
C4—C5—C6—C7	53.2 (6)	C11—C12′—C13′—N1	0.5 (9)
C1—C2—C7—C6	-67.6 (6)		

Symmetry codes: (i) -x+1/2, -y+3/2, -z+1; (ii) -x+1/2, y+1/2, -z+1/2; (iii) x, -y+1, z+1/2; (iv) -x+1/2, y-1/2, -z+1/2; (v) x, -y+1, z-1/2; (vi) -x+1, -y+2, -z+2.