

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Phenyl-9,12,15-trioxa-1,5,6,18-tetraazatetracyclo[16.6.1.0^{2,6}.0^{19,24}]pentaconta-2,4,19,21,23-pentaen-25-one

Joseph Nathan Ghomsi,^a Noureddine Hamou Ahabchane,^a Rachid Bouhfid,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bInstitute of Nanomaterials and Nanotechnology, Avenue de l'Armée Royale, Madinat El Irfane, 10100 Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 September 2009; accepted 14 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.176; data-to-parameter ratio = 15.8.

The title compound, C24H26N4O4, is a diaza-crown ether encompassing linked phenylpyrazolyl and benzimidazole units that contribute five atoms to the 16-atom ring. The two planar phenylpyrazolyl and benzimidazole units are aligned at an angle of 66.4 $(1)^{\circ}$. The carbonyl O atom of the benzimidazole unit is directed away from the middle of the ring.

Related literature

For the selective recognition of sodium and potassium cyanide by diaza-crown ethers, see: Liu et al. (2005).

Experimental

Crystal data

$C_{24}H_{26}N_4O_4$	V = 2262.6 (3) Å ³
$M_r = 434.49$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.348 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 15.785 (1) Å	T = 293 K
c = 11.007 (1) Å	$0.30 \times 0.30 \times 0.20 \text{ mm}$
$\beta = 102.681 \ (1)^{\circ}$	

Data collection

Refinement

4559 reflections

S = 1.16

 $R[F^2 > 2\sigma(F^2)] = 0.055$ wR(F²) = 0.176

Nonius KappaCCD diffractometer Absorption correction: none 4728 measured reflections

4559 independent reflections 3705 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

289 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: KappaCCD Server Software; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Laboratoire de Cristallochimie de la Faculté des Sciences. Université Paul Cézanne Aix-Marseille III, for the diffraction measurements. The Université Mohammed V-Agdal and the University of Malaya are thanked for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2541).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Liu, H., Shao, X.-B., Jia, M.-X., Jiang, X.-K., Li, Z.-T. & Chen, G.-J. (2005). Tetrahedron, 61, 8095-8100.
- Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o2493 [doi:10.1107/S1600536809037131]

4-Phenyl-9,12,15-trioxa-1,5,6,18-tetraazatetracyclo-[16.6.1.0^{2,6}.0^{19,24}]pentaconta-2,4,19,21,23-pentaen-25-one

Joseph Nathan Ghomsi, Noureddine Hamou Ahabchane, Rachid Bouhfid, El Mokhtar Essassi and Seik Weng Ng

S1. Experimental

1-(3-Phenylpyrazolyl)benzimidazol-2-one (1 g, 4.5 mmol), dichlorotetraethyleneglycol (0.31 ml, 5.0 mmol), potassium carbonate (0.7 g, 5.0 mmol) and a catalytic quantity of tetra-*n*-butylammonium bromide were stirred in *N*,*N*-dimethyl-formamide (60 ml) in an oil bath heated to 353–363 K for 24 h. The insoluble salts were filtered off and the solvent removed in vacuum. The residue was separated by chromatography on silica gel with a hexane:ethyl acetate (7:3) solvent system. Evaporation of the solvent gave the compound as colorless crystals in 25% yield; m.p. 402–404 K.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{24}H_{26}N_4O_4$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

4-Phenyl-9,12,15-trioxa-1,5,6,18- tetraazatetracyclo[16.6.1.0^{2,6}.0^{19,24}]pentaconta-2,4,19,21,23- pentaen-25-one

F(000) = 920

 $\theta = 1.3 - 26.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

Prism, colorless

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.276 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4728 reflections

Crystal data

 $C_{24}H_{26}N_4O_4$ $M_r = 434.49$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.348 (1) Å b = 15.785 (1) Å c = 11.007 (1) Å $\beta = 102.681$ (1)° V = 2262.6 (3) Å³ Z = 4

Data collection

Nonius KappaCCD	3705 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.038$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 1.6^\circ$
Graphite monochromator	$h = -16 \rightarrow 16$
φ scans	$k = 0 \rightarrow 19$
4728 measured reflections	$l = 0 \rightarrow 13$
4559 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.176$	neighbouring sites
<i>S</i> = 1.16	H-atom parameters constrained
4559 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0966P)^2 + 0.3451P]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.87698 (11)	0.57891 (11)	0.53630 (16)	0.0794 (5)	
O2	0.74157 (12)	0.43571 (10)	0.44390 (16)	0.0745 (4)	
03	0.53984 (12)	0.47052 (9)	0.31375 (15)	0.0699 (4)	
04	0.54645 (11)	0.71208 (10)	0.41785 (13)	0.0682 (4)	
N1	0.70082 (11)	0.67744 (10)	0.36647 (14)	0.0524 (4)	
N2	0.55695 (10)	0.65098 (9)	0.22803 (13)	0.0449 (3)	
N3	0.38396 (11)	0.60439 (10)	0.22449 (13)	0.0499 (4)	
N4	0.28762 (10)	0.61095 (10)	0.15421 (14)	0.0520 (4)	
C1	0.76670 (16)	0.69810 (14)	0.4862 (2)	0.0661 (5)	
H1A	0.7322	0.7392	0.5282	0.079*	
H1B	0.8293	0.7240	0.4728	0.079*	
C2	0.79396 (16)	0.62171 (18)	0.5685 (2)	0.0753 (6)	
H2A	0.8125	0.6392	0.6550	0.090*	
H2B	0.7352	0.5841	0.5583	0.090*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C50.1557 (1)0.1557 (2)0.1557 (2)0.1557 (2)H3A0.85340.48340.64220.108*H3B0.96200.48160.60910.108*C40.84994 (19)0.43449 (18)0.4718 (3)0.0905 (9)H4A0.87430.37750.49430.109*C50.6978 (2)0.39909 (15)0.3267 (2)0.0809 (7)H5A0.72860.34410.31980.097*C60.5855 (2)0.38942 (13)0.3138 (2)0.0767 (6)H6A0.55610.36020.23670.092*H6B0.57200.35600.38240.092*C70.43698 (16)0.46653 (14)0.32369 (19)0.0647 (5)H7A0.43110.43220.39490.078*H7B0.39540.44090.24940.078*C80.40064 (15)0.55170.36730.073*R8B0.45090.58310.40270.073*C90.59594 (13)0.68361 (11)0.34668 (17)0.0499 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0652 (5)H110.88370.63290.29780.071*C120.82438 (17)0.58767 (14)0.0395 (2)0.0595 (5)H110.88710.57767 (14)0.0395 (2)0.0652 (5)H110.43290.5767 (14)0.0395 (2)0.0652 (5)H110.5380 (15)0.58741 (12)0.06293 (17)0.0647 (4)H120.63801 (15)0.58741 (
H3B0.60210.48160.60910.108*C40.84994 (19)0.43149 (18)0.4718 (3)0.0905 (9)H4A0.87490.45160.39910.109*H4B0.87430.37750.49430.109*C50.6978 (2)0.39909 (15)0.3267 (2)0.0809 (7)H5A0.72860.34410.31980.097*H5B0.71120.43500.26050.097*C60.8555 (2)0.38942 (13)0.3138 (2)0.0767 (6)H6A0.55610.36020.23670.092*C70.43698 (16)0.46653 (14)0.32369 (19)0.0647 (5)H7A0.43110.43220.39490.078*H7B0.39540.44090.24940.078*C80.40064 (15)0.55170.36730.073*C90.59594 (13)0.68361 (11)0.34668 (17)0.0499 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.58767 (14)0.0395 (2)0.0685 (6)H120.73890.5424-0.03560.078*C130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.66293 (17)0.0647 (4)H140.57920.57610.00470.066*C150.63804 (12)0.64057 (10)0.17250
ALLHOLEHOLEHOLEHOLEC4 0.84994 (19) 0.43449 (18) 0.4718 (3) 0.0095 (9)H4A 0.8749 0.4516 0.3991 $0.109*$ H4B 0.8743 0.3775 0.4943 $0.109*$ C5 0.6978 (2) 0.39909 (15) 0.3267 (2) 0.0809 (7)H5A 0.7286 0.3441 0.3198 $0.097*$ H5B 0.7112 0.4350 0.2605 $0.097*$ C6 0.8855 (2) 0.38942 (13) 0.3138 (2) 0.0767 (6)H6A 0.5561 0.3602 0.2367 $0.092*$ H6B 0.5720 0.3560 0.3824 $0.092*$ C7 0.43698 (16) 0.46653 (14) 0.32369 (19) 0.0647 (5)H7A 0.4311 0.4322 0.3949 $0.078*$ C8 0.40064 (15) 0.5517 0.3673 $0.073*$ C8 0.40064 (15) 0.5517 0.3673 $0.073*$ C9 0.59594 (13) 0.68361 (11) 0.34668 (17) 0.0499 (4)C10 0.72822 (13) 0.64095 (10) 0.26302 (17) 0.0471 (4)C11 0.82330 (14) 0.62168 (12) 0.2396 (2) 0.0590 (5)H11 0.8837 0.6329 0.2978 $0.071*$ C12 0.84871 0.5717 0.1074 $0.082*$ C13 0.7389 0.5424 -0.0356 $0.078*$ C14 0.63960 (15) 0.58741 (12) 0.06293 (17) 0.06457 (5)H13<
HAA 0.8749 0.4516 0.3991 0.109* H4B 0.8749 0.4516 0.3991 0.109* C5 0.6978 (2) 0.39909 (15) 0.3267 (2) 0.0809 (7) H5A 0.7286 0.3441 0.3198 0.097* H5B 0.7112 0.4350 0.2605 0.097* C6 0.5855 (2) 0.38942 (13) 0.3138 (2) 0.0767 (6) H6A 0.5561 0.3602 0.2367 0.092* H6B 0.5720 0.3560 0.3824 0.092* C7 0.43698 (16) 0.46653 (14) 0.32369 (19) 0.0647 (5) H7A 0.4311 0.4322 0.3949 0.078* C8 0.40064 (15) 0.55449 (14) 0.33892 (17) 0.0605 (5) H8A 0.3369 0.5517 0.3673 0.073* C9 0.59594 (13) 0.68361 (11) 0.3468 (17) 0.0499 (4) C10 0.72822 (13) 0.64095 (10) 0.26302 (17) 0.0471 (4) C
H4B 0.8743 0.3775 0.4943 0.109^* C5 0.6978 (2) 0.39909 (15) 0.3267 (2) 0.0809 (7)H5A 0.7286 0.3441 0.3198 0.097^* H5B 0.7112 0.4350 0.2605 0.097^* C6 0.5855 (2) 0.38942 (13) 0.3138 (2) 0.0767 (6)H6A 0.5561 0.3602 0.2367 0.092^* H6B 0.5720 0.3560 0.3824 0.092^* C7 0.43698 (16) 0.46653 (14) 0.32369 (19) 0.0647 (5)H7A 0.4311 0.4322 0.3949 0.078^* C8 0.40064 (15) 0.55449 (14) 0.33892 (17) 0.0605 (5)H8A 0.3369 0.5517 0.3673 0.073^* C9 0.59594 (13) 0.68361 (11) 0.34668 (17) 0.0499 (4)C10 0.72822 (13) 0.64095 (10) 0.26302 (17) 0.0471 (4)C11 0.8230 (14) 0.62168 (12) 0.2396 (2) 0.0590 (5)H11 0.8837 0.6329 0.2978 $0.071*$ C12 0.82438 (17) 0.58505 (14) 0.1261 (2) 0.0685 (6)H12 0.8711 0.5767 (14) 0.0395 (2) 0.0652 (5)H13 0.7389 0.5424 -0.0356 $0.078*$ C12 0.82438 (17) 0.58761 0.0047 $0.066*$ C12 0.82438 (15) 0.58741 0.0047 $0.066*$ C13 0.73599 (15) 0.58761 $0.$
InternalInternalInternalInternalC5 0.6978 (2) 0.39909 (15) 0.3267 (2) 0.0809 (7)H5A 0.7286 0.3441 0.3198 $0.097*$ H5B 0.7112 0.4350 0.2605 $0.097*$ C6 0.5855 (2) 0.38942 (13) 0.3138 (2) 0.0767 (6)H6A 0.5561 0.3602 0.2367 $0.092*$ H6B 0.5720 0.3560 0.3824 $0.092*$ C7 0.43698 (16) 0.46653 (14) 0.32369 (19) 0.0647 (5)H7A 0.4311 0.4322 0.3949 $0.078*$ C8 0.40064 (15) 0.55449 (14) 0.33892 (17) 0.0605 (5)H8A 0.3369 0.5517 0.3673 $0.073*$ C9 0.59594 (13) 0.68361 (11) 0.34668 (17) 0.0499 (4)C10 0.72822 (13) 0.64095 (10) 0.26302 (17) 0.0471 (4)C11 0.82330 (14) 0.62168 (12) 0.2396 (2) 0.0590 (5)H11 0.8837 0.6329 0.2978 $0.071*$ C12 0.82438 (17) 0.58505 (14) 0.1261 (2) 0.0685 (6)H12 0.8711 0.5717 0.1074 $0.082*$ C13 0.73509 (17) 0.5677 (14) 0.0395 (2) 0.0652 (5)H13 0.7389 0.5424 -0.0356 $0.078*$ C14 0.63960 (15) 0.58741 (12) 0.0647 (4)H14 0.5792 0.5761 0.0047 $0.066*$ <t< td=""></t<>
H5A0.72860.34410.31980.097*H5B0.71120.43500.26050.097*C60.5855 (2)0.38942 (13)0.3138 (2)0.0767 (6)H6A0.55610.36020.23670.092*H6B0.57200.35600.38240.092*C70.43698 (16)0.46653 (14)0.32369 (19)0.0647 (5)H7A0.43110.43220.39490.078*H7B0.39540.44090.24940.078*C80.40064 (15)0.55170.36730.073*C90.59594 (13)0.68361 (11)0.34668 (17)0.04499 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.56767 (14)0.1261 (2)0.0685 (6)H120.88710.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.0647 (14)0.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4) <t< td=""></t<>
HSB0.71120.43500.26050.097*C60.5855 (2)0.38942 (13)0.3138 (2)0.0767 (6)H6A0.55610.36020.23670.092*H6B0.57200.35600.38240.092*C70.43698 (16)0.46653 (14)0.32369 (19)0.0647 (5)H7A0.43110.43220.39490.078*C80.40064 (15)0.55449 (14)0.33892 (17)0.0605 (5)H8A0.33690.55170.36730.073*C90.59594 (13)0.68361 (11)0.34668 (17)0.0499 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.557170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424 -0.0356 0.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H40.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C60.5855 (2)0.38942 (13)0.3138 (2)0.0767 (6)H6A0.55610.36020.23670.092*H6B0.57200.35600.38240.092*C70.43698 (16)0.46653 (14)0.32369 (19)0.0647 (5)H7A0.43110.43220.39490.078*C80.40064 (15)0.55449 (14)0.33892 (17)0.0605 (5)H8A0.33690.55170.36730.073*C90.59594 (13)0.68361 (11)0.34668 (17)0.0499 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.56767 (14)0.1261 (2)0.0685 (6)H120.88710.57170.10740.082*C130.73509 (17)0.5424 -0.0356 0.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.68079 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H6A 0.5561 0.3602 0.2367 $0.092*$ H6B 0.5720 0.3560 0.3824 $0.092*$ C7 $0.43698(16)$ $0.46653(14)$ $0.32369(19)$ $0.0647(5)$ H7A 0.4311 0.4322 0.3949 $0.078*$ TB 0.3954 0.4409 0.2494 $0.078*$ C8 $0.40064(15)$ $0.55449(14)$ $0.33892(17)$ $0.0605(5)$ H8A 0.3369 0.5517 0.3673 $0.073*$ C9 $0.59594(13)$ $0.68361(11)$ $0.34668(17)$ $0.0499(4)$ C10 $0.72822(13)$ $0.64095(10)$ $0.26302(17)$ $0.0471(4)$ C11 $0.82330(14)$ $0.62168(12)$ $0.2396(2)$ $0.0590(5)$ H11 0.8837 0.6329 0.2978 $0.071*$ C12 $0.82438(17)$ $0.56767(14)$ $0.1261(2)$ $0.0685(6)$ H12 0.8871 0.5717 0.1074 $0.082*$ C13 0.7389 0.5424 -0.0356 $0.078*$ C14 $0.63960(15)$ $0.58741(12)$ $0.06293(17)$ $0.0547(4)$ H14 0.5792 0.5761 0.0047 $0.066*$ C15 $0.63804(12)$ $0.62421(10)$ $0.17250(15)$ $0.0438(4)$ C17 $0.39923(13)$ $0.68079(10)$ $0.06243(16)$ $0.0461(4)$ H17 0.4253 0.7126 0.0053 $0.055*$
H6B 0.5720 0.3560 0.3824 $0.092*$ C7 $0.43698(16)$ $0.46653(14)$ $0.32369(19)$ $0.0647(5)$ H7A 0.4311 0.4322 0.3949 $0.078*$ H7B 0.3954 0.4409 0.2494 $0.078*$ C8 $0.40064(15)$ $0.55449(14)$ $0.33892(17)$ $0.0605(5)$ H8A 0.3369 0.5517 0.3673 $0.073*$ C9 $0.59594(13)$ $0.68361(11)$ $0.34668(17)$ $0.0499(4)$ C10 $0.72822(13)$ $0.64095(10)$ $0.26302(17)$ $0.0471(4)$ C11 $0.82330(14)$ $0.62168(12)$ $0.2396(2)$ $0.0590(5)$ H11 0.8837 0.6329 0.2978 $0.071*$ C12 $0.82438(17)$ $0.55767(14)$ $0.1261(2)$ $0.0685(6)$ H12 0.8871 0.5717 0.1074 $0.82*$ C13 0.7389 0.5424 -0.0356 $0.078*$ C14 $0.63960(15)$ $0.58741(12)$ $0.06293(17)$ $0.0547(4)$ H14 0.5792 0.5761 0.0047 $0.066*$ C15 $0.63804(12)$ $0.62421(10)$ $0.17250(15)$ $0.0438(4)$ C17 $0.39923(13)$ $0.68079(10)$ 0.0533 $0.055*$
C7 $0.43698 (16)$ $0.46653 (14)$ $0.32369 (19)$ $0.0647 (5)$ H7A 0.4311 0.4322 0.3949 $0.078*$ H7B 0.3954 0.4409 0.2494 $0.078*$ C8 $0.40064 (15)$ $0.55449 (14)$ $0.33892 (17)$ $0.0605 (5)$ H8A 0.3369 0.5517 0.3673 $0.073*$ C9 $0.59594 (13)$ $0.68361 (11)$ $0.34668 (17)$ $0.0499 (4)$ C10 $0.72822 (13)$ $0.64095 (10)$ $0.26302 (17)$ $0.071*$ C11 $0.82330 (14)$ $0.62168 (12)$ $0.2396 (2)$ $0.0590 (5)$ H11 0.8837 0.6329 0.2978 $0.071*$ C12 $0.82438 (17)$ $0.56767 (14)$ $0.1261 (2)$ $0.0685 (6)$ H12 0.8871 0.5717 0.1074 $0.082*$ C13 0.7389 0.5424 -0.0356 $0.078*$ C14 $0.63960 (15)$ $0.58741 (12)$ $0.06293 (17)$ $0.0547 (4)$ H14 0.5792 0.5761 0.0047 $0.066*$ C15 $0.63804 (12)$ $0.62421 (10)$ $0.17555 (16)$ $0.0438 (4)$ C17 $0.39923 (13)$ $0.68079 (10)$ $0.0523 (16)$ $0.0461 (4)$ H17 0.4253 0.7126 0.0053 $0.055*$
H7A0.43110.43220.39490.078*H7B0.39540.44090.24940.078*C80.40064 (15)0.55449 (14)0.33892 (17)0.0605 (5)H8A0.33690.55170.36730.073*H8B0.45090.58310.40270.073*C90.59594 (13)0.64095 (10)0.26302 (17)0.0471 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.58505 (14)0.1261 (2)0.0685 (6)H120.87110.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H7B 0.3954 0.4409 0.2494 $0.078*$ C8 $0.40064 (15)$ $0.55449 (14)$ $0.33892 (17)$ $0.0605 (5)$ H8A 0.3369 0.5517 0.3673 $0.073*$ H8B 0.4509 0.5831 0.4027 $0.073*$ C9 $0.59594 (13)$ $0.68361 (11)$ $0.34668 (17)$ $0.0499 (4)$ C10 $0.72822 (13)$ $0.64095 (10)$ $0.26302 (17)$ $0.0471 (4)$ C11 $0.82330 (14)$ $0.62168 (12)$ $0.2396 (2)$ $0.0590 (5)$ H11 0.8837 0.6329 0.2978 $0.071*$ C12 $0.82438 (17)$ $0.58505 (14)$ $0.1261 (2)$ $0.0685 (6)$ H12 0.8871 0.5717 0.1074 $0.82*$ C13 $0.73509 (17)$ $0.56767 (14)$ $0.0395 (2)$ $0.0652 (5)$ H13 0.7389 0.5424 -0.0356 $0.078*$ C14 $0.63960 (15)$ $0.58741 (12)$ $0.06293 (17)$ $0.0547 (4)$ H14 0.5792 0.5761 0.0047 $0.066*$ C15 $0.63804 (12)$ $0.62421 (10)$ $0.17250 (15)$ $0.438 (4)$ C17 $0.39923 (13)$ $0.68079 (10)$ $0.06243 (16)$ $0.0461 (4)$ H17 0.4253 0.7126 0.0053 $0.055*$
C8 $0.40064 (15)$ $0.55449 (14)$ $0.33892 (17)$ $0.0605 (5)$ H8A 0.3369 0.5517 0.3673 0.073^* H8B 0.4509 0.5831 0.4027 0.073^* C9 $0.59594 (13)$ $0.68361 (11)$ $0.34668 (17)$ $0.0499 (4)$ C10 $0.72822 (13)$ $0.64095 (10)$ $0.26302 (17)$ $0.0471 (4)$ C11 $0.82330 (14)$ $0.62168 (12)$ $0.2396 (2)$ $0.0590 (5)$ H11 0.8837 0.6329 0.2978 0.071^* C12 $0.82438 (17)$ $0.58505 (14)$ $0.1261 (2)$ $0.0685 (6)$ H12 0.8871 0.5717 0.1074 0.082^* C13 $0.73509 (17)$ $0.56767 (14)$ $0.0395 (2)$ $0.0652 (5)$ H13 0.7389 0.5424 -0.0356 0.078^* C14 $0.63960 (15)$ $0.58741 (12)$ $0.06293 (17)$ $0.0547 (4)$ H14 0.5792 0.5761 0.0047 0.066^* C15 $0.63804 (12)$ $0.62421 (10)$ $0.17555 (16)$ $0.0438 (4)$ C17 $0.39923 (13)$ $0.68079 (10)$ $0.06243 (16)$ $0.0461 (4)$ H17 0.4253 0.7126 0.0053 0.055^*
H8A0.33690.55170.36730.073*H8B0.45090.58310.40270.073*C90.59594 (13)0.68361 (11)0.34668 (17)0.0499 (4)C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.58505 (14)0.1261 (2)0.0685 (6)H120.88710.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H8B 0.4509 0.5831 0.4027 0.073^* C9 $0.59594 (13)$ $0.68361 (11)$ $0.34668 (17)$ $0.0499 (4)$ C10 $0.72822 (13)$ $0.64095 (10)$ $0.26302 (17)$ $0.0471 (4)$ C11 $0.82330 (14)$ $0.62168 (12)$ $0.2396 (2)$ $0.0590 (5)$ H11 0.8837 0.6329 0.2978 0.071^* C12 $0.82438 (17)$ $0.58505 (14)$ $0.1261 (2)$ $0.0685 (6)$ H12 0.8871 0.5717 0.1074 0.082^* C13 $0.73509 (17)$ $0.56767 (14)$ $0.0395 (2)$ $0.0652 (5)$ H13 0.7389 0.5424 -0.0356 0.078^* C14 $0.63960 (15)$ $0.58741 (12)$ $0.06293 (17)$ $0.0547 (4)$ H14 0.5792 0.5761 0.0047 0.066^* C15 $0.63804 (12)$ $0.62421 (10)$ $0.17555 (16)$ $0.0441 (4)$ C16 $0.45233 (12)$ $0.64657 (10)$ $0.17250 (15)$ $0.0438 (4)$ C17 $0.39923 (13)$ $0.68079 (10)$ $0.0623 (16)$ $0.0461 (4)$ H17 0.4253 0.7126 0.0053 0.055^*
C9 $0.59594 (13)$ $0.68361 (11)$ $0.34668 (17)$ $0.0499 (4)$ C10 $0.72822 (13)$ $0.64095 (10)$ $0.26302 (17)$ $0.0471 (4)$ C11 $0.82330 (14)$ $0.62168 (12)$ $0.2396 (2)$ $0.0590 (5)$ H11 0.8837 0.6329 0.2978 $0.071*$ C12 $0.82438 (17)$ $0.58505 (14)$ $0.1261 (2)$ $0.0685 (6)$ H12 0.8871 0.5717 0.1074 $0.082*$ C13 $0.73509 (17)$ $0.56767 (14)$ $0.0395 (2)$ $0.0652 (5)$ H13 0.7389 0.5424 -0.0356 $0.078*$ C14 $0.63960 (15)$ $0.58741 (12)$ $0.06293 (17)$ $0.0547 (4)$ H14 0.5792 0.5761 0.0047 $0.066*$ C15 $0.63804 (12)$ $0.64657 (10)$ $0.17250 (15)$ $0.0438 (4)$ C17 $0.39923 (13)$ $0.68079 (10)$ $0.06243 (16)$ $0.0461 (4)$ H17 0.4253 0.7126 0.0053 $0.055*$
C100.72822 (13)0.64095 (10)0.26302 (17)0.0471 (4)C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.58505 (14)0.1261 (2)0.0685 (6)H120.88710.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.064293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C110.82330 (14)0.62168 (12)0.2396 (2)0.0590 (5)H110.88370.63290.29780.071*C120.82438 (17)0.58505 (14)0.1261 (2)0.0685 (6)H120.88710.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H110.88370.63290.29780.071*C120.82438 (17)0.58505 (14)0.1261 (2)0.0685 (6)H120.88710.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C12 $0.82438(17)$ $0.58505(14)$ $0.1261(2)$ $0.0685(6)$ H12 0.8871 0.5717 0.1074 $0.082*$ C13 $0.73509(17)$ $0.56767(14)$ $0.0395(2)$ $0.0652(5)$ H13 0.7389 0.5424 -0.0356 $0.078*$ C14 $0.63960(15)$ $0.58741(12)$ 0.0647 $0.066*$ L14 0.5792 0.5761 0.0047 $0.066*$ C15 $0.63804(12)$ $0.62421(10)$ $0.17555(16)$ $0.0438(4)$ C16 $0.45233(12)$ $0.68079(10)$ $0.06243(16)$ $0.0461(4)$ H17 0.4253 0.7126 0.0053 $0.055*$
H120.88710.57170.10740.082*C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C130.73509 (17)0.56767 (14)0.0395 (2)0.0652 (5)H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H130.73890.5424-0.03560.078*C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C140.63960 (15)0.58741 (12)0.06293 (17)0.0547 (4)H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H140.57920.57610.00470.066*C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C150.63804 (12)0.62421 (10)0.17555 (16)0.0441 (4)C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C160.45233 (12)0.64657 (10)0.17250 (15)0.0438 (4)C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
C170.39923 (13)0.68079 (10)0.06243 (16)0.0461 (4)H170.42530.71260.00530.055*
H17 0.4253 0.7126 0.0053 0.055*
C18 0.29661 (13) 0.65690 (10) 0.05540 (15) 0.0460 (4)
C19 0.20534 (13) 0.67861 (11) -0.04115 (16) 0.0508 (4)
C20 $0.20897(16)$ $0.74172(13)$ $-0.12711(18)$ $0.0602(5)$
H20 0.2698 0.7715 -0.1231 0.072*
C21 0.12347 (19) 0.76134 (16) -0.2191 (2) 0.0749 (6)
H21 0.1273 0.8037 -0.2766 0.090*
C22 0.0333 (2) 0.71854 (18) -0.2258 (2) 0.0863 (8)
H22 -0.0239 0.7314 -0.2882 0.104*
C23 0.02757 (19) 0.65628 (19) -0.1396 (3) 0.0910 (8)
H23 -0.0339 0.6277 -0.1434 0.109*
C24 0.11280 (16) 0.63617 (15) -0.0476 (2) 0.0723 (6)
H24 0.1083 0.5942 0.0102 0.087*

Atomic displacement parameters $(Å^2)$

	$U^{\prime\prime}$	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0499 (8)	0.0938 (11)	0.0948 (11)	-0.0035 (7)	0.0166 (7)	0.0240 (9)
O2	0.0620 (9)	0.0817 (10)	0.0879 (11)	0.0055 (7)	0.0339 (8)	0.0023 (8)
O3	0.0719 (10)	0.0537 (8)	0.0884 (11)	0.0005 (6)	0.0270 (8)	0.0132 (7)
O4	0.0574 (8)	0.0837 (10)	0.0644 (8)	0.0036 (7)	0.0153 (6)	-0.0271 (7)
N1	0.0391 (8)	0.0581 (9)	0.0564 (9)	-0.0015 (6)	0.0025 (6)	-0.0121 (7)
N2	0.0364 (7)	0.0515 (8)	0.0457 (7)	-0.0022 (5)	0.0066 (5)	-0.0064 (6)
N3	0.0381 (7)	0.0627 (9)	0.0476 (8)	-0.0022 (6)	0.0067 (6)	0.0078 (6)
N4	0.0375 (7)	0.0633 (9)	0.0525 (8)	-0.0039 (6)	0.0037 (6)	0.0032 (7)
C1	0.0534 (11)	0.0746 (13)	0.0643 (12)	-0.0117 (9)	-0.0002 (9)	-0.0193 (10)
C2	0.0507 (11)	0.1098 (18)	0.0612 (12)	-0.0070 (11)	0.0032 (9)	0.0040 (12)
C3	0.0520 (12)	0.110 (2)	0.106 (2)	0.0051 (13)	0.0119 (12)	0.0449 (17)
C4	0.0650 (14)	0.0863 (17)	0.133 (2)	0.0198 (12)	0.0494 (15)	0.0357 (17)
C5	0.105 (2)	0.0658 (13)	0.0814 (16)	0.0234 (12)	0.0423 (14)	0.0053 (12)
C6	0.1036 (19)	0.0526 (11)	0.0731 (14)	0.0036 (11)	0.0177 (13)	-0.0005 (10)
C7	0.0582 (12)	0.0722 (13)	0.0589 (11)	-0.0143 (9)	0.0027 (9)	0.0201 (10)
C8	0.0509 (10)	0.0840 (14)	0.0463 (9)	-0.0043 (9)	0.0101 (8)	0.0145 (9)
C9	0.0461 (9)	0.0509 (9)	0.0516 (9)	0.0000 (7)	0.0082 (7)	-0.0095 (8)
C10	0.0423 (9)	0.0435 (8)	0.0556 (10)	-0.0006 (6)	0.0107 (7)	0.0002 (7)
C11	0.0424 (9)	0.0630 (11)	0.0724 (12)	0.0028 (8)	0.0143 (8)	0.0057 (9)
C12	0.0590 (12)	0.0738 (13)	0.0806 (14)	0.0150 (10)	0.0328 (11)	0.0071 (11)
C13	0.0731 (13)	0.0671 (12)	0.0615 (11)	0.0087 (10)	0.0280 (10)	-0.0040 (10)
C14	0.0588 (11)	0.0551 (10)	0.0507 (9)	-0.0019 (8)	0.0133 (8)	-0.0033 (8)
C15	0.0431 (9)	0.0399 (8)	0.0509 (9)	-0.0011 (6)	0.0140 (7)	-0.0008 (7)
C16	0.0385 (8)	0.0468 (8)	0.0457 (8)	-0.0022 (6)	0.0083 (6)	-0.0028 (7)
C17	0.0469 (9)	0.0439 (8)	0.0473 (9)	-0.0019 (7)	0.0099 (7)	0.0013 (7)
C18	0.0443 (9)	0.0443 (8)	0.0469 (9)	-0.0001 (6)	0.0046 (7)	-0.0029 (7)
C19	0.0495 (10)	0.0497 (9)	0.0496 (9)	0.0060 (7)	0.0030 (7)	-0.0080 (8)
C20	0.0595 (11)	0.0609 (11)	0.0555 (10)	0.0093 (9)	0.0029 (8)	0.0008 (9)
C21	0.0790 (15)	0.0770 (14)	0.0611 (12)	0.0232 (12)	-0.0009 (10)	0.0070 (10)
C22	0.0712 (15)	0.0955 (17)	0.0761 (15)	0.0222 (13)	-0.0190 (12)	-0.0039 (13)
C23	0.0541 (13)	0.1033 (19)	0.0994 (19)	-0.0065 (12)	-0.0181 (12)	0.0013 (16)
C24	0.0528 (11)	0.0753 (14)	0.0789 (14)	-0.0048 (10)	-0.0071 (10)	0.0058 (11)

Geometric parameters (Å, °)

01—C2	1.408 (3)	С6—Н6В	0.9700
O1—C3	1.424 (3)	C7—C8	1.492 (3)
O2—C4	1.411 (3)	C7—H7A	0.9700
O2—C5	1.418 (3)	C7—H7B	0.9700
O3—C7	1.402 (2)	C8—H8A	0.9700
O3—C6	1.418 (3)	C8—H8B	0.9700
O4—C9	1.216 (2)	C10—C11	1.383 (2)
N1—C9	1.372 (2)	C10—C15	1.392 (2)
N1-C10	1.395 (2)	C11—C12	1.380 (3)
N1-C1	1.452 (2)	C11—H11	0.9300

N2 C0	1.304(2)	C12 C13	1 380 (3)
$N_2 = C_1 \delta$	1.394(2) 1 308(2)	C12 H12	0.0300
N2C15	1 399 (2)	C12 - C12	1 390 (3)
N3 N/	1.355(2)	C13 H13	0.0300
N3 C16	1.3515(1)	C14 C15	1.373(3)
N2 C9	1.334(2) 1.460(2)	C14 = C13	1.373(3)
N_{3} C_{3}	1.400(2) 1.334(2)	C_{14}	0.9300
114-018	1.534(2)	C10-C17	1.373(2)
C1 - C2	1.304 (3)	C17 - C18	1.400(2)
CI-HIA	0.9700	C1/-H1/	0.9300
	0.9700	C18—C19	1.4/1 (2)
C2—H2A	0.9700	C19—C20	1.382 (3)
C2—H2B	0.9700	C19—C24	1.393 (3)
C3—C4	1.478 (4)	C20—C21	1.385 (3)
С3—НЗА	0.9700	C20—H20	0.9300
С3—Н3В	0.9700	C21—C22	1.368 (4)
C4—H4A	0.9700	C21—H21	0.9300
C4—H4B	0.9700	C22—C23	1.380 (4)
C5—C6	1.482 (4)	C22—H22	0.9300
С5—Н5А	0.9700	C23—C24	1.384 (3)
С5—Н5В	0.9700	С23—Н23	0.9300
С6—Н6А	0.9700	C24—H24	0.9300
C2—O1—C3	115.28 (18)	N3—C8—C7	113.37 (17)
C4—O2—C5	113.0 (2)	N3—C8—H8A	108.9
C7—O3—C6	112.79 (17)	С7—С8—Н8А	108.9
C9—N1—C10	109.93 (14)	N3—C8—H8B	108.9
C9—N1—C1	121.44 (16)	С7—С8—Н8В	108.9
C10—N1—C1	128.23 (16)	H8A—C8—H8B	107.7
C9—N2—C16	124.04 (14)	O4—C9—N1	127.12 (17)
C9—N2—C15	109.56 (13)	04—C9—N2	126.59 (16)
C16 - N2 - C15	126.40 (14)	N1-C9-N2	106.29 (14)
N4—N3—C16	111.43 (13)	$C_{11} - C_{10} - C_{15}$	121.28(17)
N4—N3—C8	118 73 (14)	$C_{11} - C_{10} - N_{1}$	131.19(17)
C16 - N3 - C8	129.83 (15)	C_{15} C_{10} N_{1}	107.53(14)
C18 N4 N3	125.05(13) 105.29(13)	C_{12} C_{11} C_{10}	107.95(14) 116.95(19)
N1 - C1 - C2	105.29(15) 112.63(18)	C12 - C11 - H11	121.5
N1 = C1 = C2	100.1	$C_{12} = C_{11} = H_{11}$	121.5
$C_2 = C_1 = H_1 A$	109.1	$C_{11} = C_{12} = C_{13}$	121.3 121.08(18)
NI CI UID	109.1	$C_{11} = C_{12} = C_{13}$	121.96 (16)
NI - CI - HIB	109.1	C12 - C12 - H12	119.0
	109.1	C13—C12—H12	119.0
HIA—CI—HIB	107.8	C12 - C13 - C14	121.01 (19)
01 - 02 - 01	109.45 (19)	С12—С13—Н13	119.5
UI-U2-H2A	109.8	C14—C13—H13	119.5
CI—C2—H2A	109.8	C15—C14—C13	117.28 (18)
01—C2—H2B	109.8	C15—C14—H14	121.4
C1—C2—H2B	109.8	C13—C14—H14	121.4
H2A—C2—H2B	108.2	C14—C15—C10	121.50 (16)
O1—C3—C4	110.9 (2)	C14—C15—N2	131.82 (16)

O1 C3 H3A	109.4	C10 C15 N2	106 68 (14)
C_{1} C_{2} H_{2}	109.4	$N_{2} = C_{10} = N_{2}$	100.08(14) 107.53(14)
$C_4 = C_5 = H_3 R$	109.4	$N_2 = C_{16} = N_2$	107.33(14) 122.76(15)
C_{1} C_{2} H_{2} H_{2}	109.4	10 - 10 - 10	122.70(15) 120.72(15)
L_{1}^{2}	109.5	$C_{1}^{-1} = C_{10}^{-10} = N_2^{-10}$	129.72(13) 104.54(15)
$H_{3}A = C_{3} = H_{3}B$	100.0	C1(-C17-C18)	104.34(13)
02-C4-C3	109.7 (2)	C10 - C17 - H17	127.7
02-C4-H4A	109.7	C18-C17-H17	127.7
$C_3 - C_4 - H_4 A$	109.7	N4	111.20 (15)
02-C4-H4B	109.7	N4—C18—C19	120.47 (16)
C3—C4—H4B	109.7		128.30 (17)
H4A—C4—H4B	108.2	C20—C19—C24	118.42 (18)
02	109.61 (18)	C20—C19—C18	120.97 (17)
O2—C5—H5A	109.7	C24—C19—C18	120.61 (18)
С6—С5—Н5А	109.7	C19—C20—C21	121.0 (2)
O2—C5—H5B	109.7	С19—С20—Н20	119.5
C6—C5—H5B	109.7	С21—С20—Н20	119.5
H5A—C5—H5B	108.2	C22—C21—C20	120.2 (2)
O3—C6—C5	109.42 (19)	C22—C21—H21	119.9
O3—C6—H6A	109.8	C20—C21—H21	119.9
С5—С6—Н6А	109.8	C21—C22—C23	119.7 (2)
O3—C6—H6B	109.8	C21—C22—H22	120.1
С5—С6—Н6В	109.8	C23—C22—H22	120.1
H6A—C6—H6B	108.2	C22—C23—C24	120.4 (2)
O3—C7—C8	108.36 (16)	С22—С23—Н23	119.8
O3—C7—H7A	110.0	С24—С23—Н23	119.8
С8—С7—Н7А	110.0	C23—C24—C19	120.3 (2)
O3—C7—H7B	110.0	C23—C24—H24	119.9
С8—С7—Н7В	110.0	C19—C24—H24	119.9
H7A—C7—H7B	108.4		
C16—N3—N4—C18	1.09 (19)	C11—C10—C15—C14	0.5 (3)
C8—N3—N4—C18	-177.89 (16)	N1-C10-C15-C14	-179.58 (16)
C9—N1—C1—C2	94.0 (2)	C11—C10—C15—N2	179.97 (16)
C10—N1—C1—C2	-78.1 (3)	N1-C10-C15-N2	-0.06 (18)
C3-01-C2-C1	-160.4(2)	C9—N2—C15—C14	179.20 (18)
N1-C1-C2-O1	82.7 (2)	C16 - N2 - C15 - C14	-0.8(3)
C2-01-C3-C4	101.9 (2)	C9—N2—C15—C10	-0.24(18)
$C_{5}-C_{2}-C_{4}-C_{3}$	164.8 (2)	C16 - N2 - C15 - C10	179.74 (15)
01 - C3 - C4 - 02	-737(2)	N4—N3—C16—C17	-1.25(19)
C4-O2-C5-C6	170 39 (18)	C8-N3-C16-C17	177 59 (18)
C7-O3-C6-C5	-16959(19)	N4—N3—C16—N2	178 75 (15)
$0^{2}-C^{5}-C^{6}-O^{3}$	64 1 (2)	C8 - N3 - C16 - N2	-24(3)
$C_{6} = 0_{3} = 0_{7} = 0_{8}$	172.95 (17)	C9-N2-C16-N3	-580(2)
N4—N3—C8—C7	97 73 (19)	$C_{15} N_{2} C_{16} N_{3}$	122.04(19)
C16 - N3 - C8 - C7	-81.0 (2)	C9 - N2 - C16 - C17	122.0+(17) 122.0+(17)
03-07-08 N3	73.3(2)	$C_{12} = C_{10} = C_{17}$	-580(3)
$C_{10} = C_{1} = C_{0} = C_{10}$	(3.3(2)) 170 75 (10)	$N_3 = C_{10} = C_{17} = C_{19}$	0.86(18)
$C_{1} = N_{1} = C_{2} = C_{4}$	(17)	N2 C16 C17 C19	-170 14 (16)
$U_1 = 1 \times 1 = U_2 = U_4$	0.5 (5)	N2-U10-U1/-U18	-1/9.14 (10)

C10—N1—C9—N2	-0.49 (19)	N3—N4—C18—C17	-0.51 (19)
C1—N1—C9—N2	-173.91 (16)	N3—N4—C18—C19	-178.65 (15)
C16—N2—C9—O4	0.2 (3)	C16—C17—C18—N4	-0.21 (19)
C15—N2—C9—O4	-179.79 (19)	C16—C17—C18—C19	177.74 (16)
C16—N2—C9—N1	-179.53 (15)	N4—C18—C19—C20	164.40 (17)
C15—N2—C9—N1	0.45 (19)	C17—C18—C19—C20	-13.4 (3)
C9—N1—C10—C11	-179.68 (18)	N4—C18—C19—C24	-15.2 (3)
C1—N1—C10—C11	-6.8 (3)	C17—C18—C19—C24	166.97 (19)
C9—N1—C10—C15	0.4 (2)	C24—C19—C20—C21	-1.3 (3)
C1-N1-C10-C15	173.20 (18)	C18—C19—C20—C21	179.05 (18)
C15-C10-C11-C12	-0.2 (3)	C19—C20—C21—C22	0.4 (3)
N1-C10-C11-C12	179.87 (19)	C20—C21—C22—C23	0.7 (4)
C10-C11-C12-C13	-0.4 (3)	C21—C22—C23—C24	-0.9 (4)
C11—C12—C13—C14	0.7 (3)	C22—C23—C24—C19	0.0 (4)
C12-C13-C14-C15	-0.4 (3)	C20—C19—C24—C23	1.1 (3)
C13-C14-C15-C10	-0.2 (3)	C18—C19—C24—C23	-179.2 (2)
C13—C14—C15—N2	-179.54 (18)		