metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bipyridine)(5-isothiocyanato-1,10-phenanthroline)ruthenium(II) bis(hexafluoridophosphate) acetonitrile solvate

Samik Nag, Amlan K. Pal* and Garry S. Hanan

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7 Correspondence e-mail: amlan.kumar.pal@umontreal.ca

conespondence e-mail: annan.kumai.pai@umoniteai.ca

Received 21 August 2009; accepted 1 September 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.008 Å; R factor = 0.055; wR factor = 0.152; data-to-parameter ratio = 12.5.

The title compound, $[Ru(C_{10}H_8N_2)_2(C_{13}H_7N_3S)](PF_6)_2$ ·-CH₃CN, was synthesized by the reaction of thiophosgene and bis(2,2'-bipyridine)(1,10-phenanthrolin-5-amine)ruthenium(II) bis(hexafluoridophosphate). The Ru^{II} atom adopts a slightly distorted octahedral RuN₆ coordinaton formed by four N atoms of two bipyridine ligands and by two N atoms of the 1,10-phenantroline ligand. The isothiocyanate group is almost linear, with an N-C-S angle of 174.4 (6)°. Two of the three hexafluoridophosphate counter-anions are located on inversion centres.

Related literature

The title compound was previously synthesized by two other groups (Ryan *et al.*, 1992; Khimich *et al.*, 2007). However, the crystal structure was not reported at that time. For the crystal structures of related compounds, see: Ye *et al.* (1999); Huang & Ogawa (2006); Batey *et al.* (2007). For the importance and applications of Ru^{II} complexes with bipyridine ligands, see: Bertini *et al.* (1994); Medlycott & Hanan (2005, 2006).

Experimental

Crystal data

$[Ru(C_{10}H_8N_2)_2(C_{13}H_7N_3S)](PF_6)_2$ -	$\beta = 89.704 \ (5)^{\circ}$
C_2H_3N	$\gamma = 72.870 \ (4)^{\circ}$
$M_r = 981.71$	$V = 1847.1 (10) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 9.129 (3) Å	Mo $K\alpha$ radiation
b = 12.397 (4) Å	$\mu = 0.67 \text{ mm}^{-1}$
c = 17.084 (5) Å	T = 150 K
$\alpha = 88.618 \ (4)^{\circ}$	$0.24 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.83, \ T_{\rm max} = 0.95$	

Refinement

5

6

$R[F^2 > 2\sigma(F^2)] = 0.055$	536 parameters
$\nu R(F^2) = 0.152$	H-atom parameters constrained
S = 1.18	$\Delta \rho_{\rm max} = 1.45 \ {\rm e} \ {\rm \AA}^{-3}$
687 reflections	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

178384 measured reflections 6687 independent reflections

6155 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.061$

Table 1

Selected bond lengths (Å).

Ru-N1	2.056 (4)	Ru-N4	2.064 (4)
Ru–N3	2.059 (4)	Ru-N6	2.065 (4)
Ru–N2	2.059 (4)	Ru-N5	2.072 (4)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *UdMX* (Maris, 2004).

The authors are greatful to the Natural Sciences and Engineering Research Council of Canada and the Université de Montréal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2252).

References

Batey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). *Inorg. Chem.* 46, 6516–6528.

Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mill Valley, California: University Science Books.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Huang, W. & Ogawa, T. (2006). Polyhedron, 25, 1379-1385.
- Khimich, N. N., Zdravkov, A. V., Aleksashkina, M. A. & Chepik, L. F. (2007). *Russ. J. Appl. Chem.* 80, 358–363.

Maris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada. Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133–142.

Medlycott, E. A. & Hanan, G. S. (2006). *Coord. Chem. Rev.* **250**, 1763–1782. Ryan, E. M., O'Kennedy, R., Feeney, I. M. M., Kelly, J. M. & Vos, J. G. (1992).

Bioconjug. Chem. 3, 285–290. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

Ye, B.-H., Ji, L.-N., Xue, F. & Mak, T. C. W. (1999). *Transition Met. Chem.* 24, 8–12.

supporting information

Acta Cryst. (2009). E65, m1184 [doi:10.1107/S1600536809035302]

Bis(2,2'-bipyridine)(5-isothiocyanato-1,10-phenanthroline)ruthenium(II) bis-(hexafluoridophosphate) acetonitrile solvate

Samik Nag, Amlan K. Pal and Garry S. Hanan

S1. Comment

 Ru^{II} polypyridyl complexes, mainly $[Ru(bpy)_3]^{2+}$ (bpy = 2,2'-bipyridine) and its derivatives have been studied extensively during the past three decades for their excellent photophysical properties characterized by long excited state lifetimes which makes them suitable choice for chromophores in light-harvesting devices (Medlycott & Hanan, 2005, 2006). Such good emissive properties of this class of compounds also make them useful in labelling biomolecules (Bertini *et al.*, 1994). The title compound can be used to label biomolecules through a thiourea linkage by reaction of the isothiocyanate group on it with an amino group of the protein (Ryan *et al.*, 1992; Khimich *et al.*, 2007).

The crystal structure of the title compound reveals that the ruthenium atom has a slightly distorted octahedral coordinaton sphere and the isothiocyanate group is almost linear with a N—C—S angle of 174.4 (6)°. The six Ru—N bond distances falls in a short range of 2.056 (4) to 2.072 (4) Å, with the two longer ones being that with the phenanthroline moiety. The bite angles for the 2,2'-bipyridine lingands are 79.03 (16)° and 78.91 (15)°, while that for the phenanthroline is 78.91 (15)°.

For crystal structures of related Ru^{II} complexes with bidentate polypyridyl ligands, see: Ye *et al.* (1999); Huang & Ogawa (2006); Batey *et al.* (2007).

S2. Experimental

Bis(2,2'-bipyridine)(1,10-phenanthroline-5-amine)ruthenium(II) bis(hexafluoridophosphate) (450 mg, 0.5 mmol) was dissolved in acetone (100 ml). To this dark red solution was added Na₂CO₃ (212 mg, 2.0 mmol). After addition of CSCl₂ (0.5 ml) to the reaction mixture under N₂ atmosphere, it was stirred for 7 h. Then the solvent was evaporated under reduced pressure and the residue dissolved in dichloromethane and filtered. The filtrate was dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, a red crystalline compound was obtained. Yield: 446 mg (95%). Red crystals suitable for X-ray crystallography were grown by slow diffusion of isopropyl ether into a dilute acetonitrile solution of the title compound.

S3. Refinement

The H atoms were positioned geometrically (aromatic C—H: 0.95 Å, methyl C—H: 0.98 Å) and were included in the riding model approximation; their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent site. The highest remaining electron density peaks are close to the Ru atom, with distances of 0.84 and 0.94 Å, respectively.

Figure 1

View of the cation in the title compound. Thermal ellipsoids are shown at the 50% probability level. H atoms, hexafluoridophosphate anions and the acetonitrile solvent molecule have been omitted for clarity.

Bis(2,2'-bipyridine)(5-isothiocyanato-1,10-phenanthroline)ruthenium(II) bis(hexafluoridophosphate) acetonitrile solvate

Crystal data

$[Ru(C_{10}H_8N_2)_2(C_{13}H_7N_3S)](PF_6)_2 \cdot C_2H_3N$	1
$M_r = 981.71$	
Triclinic, $P\overline{1}$	
Hall symbol: -P 1]
a = 9.129 (3) Å	(
b = 12.397 (4) Å	(
c = 17.084 (5) Å	1
$\alpha = 88.618 \ (4)^{\circ}$	
$\beta = 89.704 \ (5)^{\circ}$]
$\gamma = 72.870 \ (4)^{\circ}$	1
$V = 1847.1 (10) \text{ Å}^3$	
Data collection	
Bruker APEXII CCD	
diffractometer	(
Radiation source: X-ray sealed tube	(

178384 m 6687 inde 6155 refl $R_{int} = 0.00$ $\theta_{max} = 25$ h = -10 k = -14k = -20

(SADABS; Sheldrick, 1996) $T_{\min} = 0.83, T_{\max} = 0.95$

Graphite monochromator

 ω scans

Detector resolution: 8.3 pixels mm⁻¹

Absorption correction: multi-scan

Z = 2 F(000) = 980 $D_x = 1.765 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32297 reflections $\theta = 2.3-24.9^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 150 K Block, red $0.24 \times 0.13 \times 0.10 \text{ mm}$

178384 measured reflections 6687 independent reflections 6155 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -20 \rightarrow 20$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.152$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.18	H-atom parameters constrained
6687 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0708P)^2 + 4.8035P]$
536 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.45 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker smart diffractometer equiped with an *APEX* II CCD Detector, a graphite monochromator. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512×512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). **Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru	0.38640 (4)	0.62025 (3)	0.24834 (2)	0.03144 (14)	
S	-0.09857 (19)	0.94046 (14)	0.70014 (10)	0.0591 (4)	
N1	0.4231 (4)	0.7694 (3)	0.2119 (2)	0.0367 (8)	
N2	0.3529 (5)	0.6162 (4)	0.1294 (2)	0.0388 (9)	
N3	0.6085 (4)	0.5205 (3)	0.2332 (2)	0.0357 (8)	
N4	0.3658 (5)	0.4625 (3)	0.2763 (2)	0.0341 (8)	
N5	0.4022 (5)	0.6486 (3)	0.3666 (2)	0.0369 (9)	
N6	0.1613 (5)	0.7088 (3)	0.2710 (2)	0.0360 (9)	
N7	0.0887 (6)	0.8460 (4)	0.5781 (3)	0.0602 (13)	
C1	0.4583 (6)	0.8450 (4)	0.2582 (3)	0.0431 (11)	
H1	0.4678	0.8303	0.3130	0.052*	
C2	0.4806 (6)	0.9433 (4)	0.2279 (4)	0.0519 (14)	
H2	0.5066	0.9947	0.2615	0.062*	
C3	0.4652 (6)	0.9660 (5)	0.1489 (4)	0.0565 (15)	
Н3	0.4791	1.0338	0.1275	0.068*	
C4	0.4294 (6)	0.8901 (5)	0.1012 (4)	0.0510 (13)	
H4	0.4183	0.9048	0.0464	0.061*	
C5	0.4095 (5)	0.7919 (4)	0.1334 (3)	0.0410 (11)	
C6	0.3705 (5)	0.7049 (4)	0.0877 (3)	0.0409 (11)	
C7	0.3534 (6)	0.7108 (5)	0.0063 (3)	0.0536 (14)	
H7	0.3704	0.7722	-0.0229	0.064*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C8	0.3122 (7)	0.6279 (6)	-0.0310 (3)	0.0581 (15)
H8	0.2978	0.6322	-0.0861	0.070*
C9	0.2917 (7)	0.5380 (5)	0.0119 (3)	0.0524 (13)
H9	0.2623	0.4800	-0.0132	0.063*
C10	0.3144 (6)	0.5336 (4)	0.0915 (3)	0.0430 (11)
H10	0.3027	0.4706	0.1209	0.052*
C11	0.7259 (6)	0.5555 (4)	0.2073 (3)	0.0433 (11)
H11	0.7092	0.6338	0.1968	0.052*
C12	0.8704 (6)	0.4822(5)	0.1952 (3)	0.0463 (12)
H12	0.9506	0.5099	0.1760	0.056*
C13	0.8972 (6)	0.3692 (5)	0.2112(3)	0.0459(12)
H13	0.9962	0.3177	0.2042	0.055*
C14	0.7764 (6)	0.3316(A)	0.2042 0.2370 (3)	0.033
U14	0.7704 (0)	0.3310 (4)	0.2379 (3)	0.0410 (11)
C15	0.7922	0.2337 0.4075 (4)	0.2490	0.049
	0.0340(0)	0.4073(4)	0.2409(3)	0.0371(10)
C16	0.4958 (6)	0.3749(4)	0.2704(3)	0.0359 (10)
C1/	0.4963 (/)	0.264/(4)	0.2856 (3)	0.0447(12)
HI7	0.5869	0.2040	0.2786	0.054*
C18	0.3620 (7)	0.2441 (4)	0.3113 (3)	0.0464 (12)
H18	0.3604	0.1693	0.3234	0.056*
C19	0.2330 (6)	0.3325 (4)	0.3189 (3)	0.0442 (12)
H19	0.1402	0.3198	0.3361	0.053*
C20	0.2374 (6)	0.4408 (4)	0.3015 (3)	0.0386 (10)
H20	0.1469	0.5020	0.3075	0.046*
C21	0.5229 (6)	0.6167 (4)	0.4138 (3)	0.0440 (11)
H21	0.6173	0.5708	0.3936	0.053*
C22	0.5166 (7)	0.6483 (5)	0.4923 (3)	0.0534 (14)
H22	0.6053	0.6249	0.5246	0.064*
C23	0.3801 (7)	0.7136 (5)	0.5214 (3)	0.0505 (13)
H23	0.3741	0.7355	0.5746	0.061*
C24	0 2514 (6)	0.7481(4)	0.4746(3)	0.0436(12)
C25	0.2311(0) 0.1014(7)	0.7101(1) 0.8152(4)	0.1710(3)	0.0453(12)
C26	-0.0220(7)	0.0132(1) 0.8445(5)	0.3000(3) 0.4516(4)	0.0527(14)
U26	-0.1182	0.8803	0.4510 (4)	0.0527 (14)
1120 C27	0.1102	0.0073	0.4703	0.003°
C27	-0.0083(0)	0.8087(4)	0.3729(3) 0.2101(4)	0.0430(12)
C28	-0.1299 (0)	0.8342 (3)	0.3191 (4)	0.0303 (13)
H28	-0.2295	0.8775	0.3348	0.061*
C29	-0.1060 (6)	0.7975 (5)	0.2446 (3)	0.0495 (13)
H29	-0.1884	0.8139	0.2082	0.059*
C30	0.0415 (6)	0.7351 (4)	0.2220 (3)	0.0437 (11)
H30	0.0572	0.7103	0.1696	0.052*
C31	0.1371 (6)	0.7452 (4)	0.3460 (3)	0.0400 (11)
C32	0.2664 (6)	0.7137 (4)	0.3967 (3)	0.0405 (11)
C33	0.0016 (7)	0.8891 (4)	0.6287 (3)	0.0510 (13)
P1	1.0000	0.5000	0.5000	0.0572 (6)
F11	0.9341 (5)	0.5008 (5)	0.4141 (3)	0.0975 (15)
F12	0.8596 (5)	0.4634 (3)	0.5351 (3)	0.0808 (13)
F13	0.9038 (5)	0.6276 (3)	0.5092 (3)	0.0901 (15)

0.5000	1.0000	0.5000	0.0427 (4)
0.4009 (6)	0.9596 (4)	0.5648 (3)	0.0951 (15)
0.6131 (6)	0.8810 (4)	0.5037 (5)	0.145 (3)
0.4083 (11)	0.9609 (7)	0.4380 (4)	0.177 (4)
0.17933 (17)	0.24155 (12)	0.02025 (9)	0.0502 (4)
0.1520 (7)	0.1887 (4)	0.1024 (3)	0.113 (2)
0.0179 (5)	0.2320 (4)	-0.0039 (5)	0.129 (2)
0.2061 (9)	0.2892 (4)	-0.0615 (3)	0.129 (2)
0.3376 (6)	0.2461 (4)	0.0479 (4)	0.1127 (19)
0.1002 (5)	0.3654 (3)	0.0503 (3)	0.0762 (11)
0.2583 (5)	0.1159 (3)	-0.0085 (2)	0.0712 (10)
0.8638 (9)	0.0429 (5)	0.1327 (4)	0.0609 (16)
1.0145 (9)	-0.0209 (6)	0.1065 (5)	0.0735 (19)
1.0621	0.0296	0.0780	0.110*
1.0056	-0.0805	0.0718	0.110*
1.0779	-0.0550	0.1519	0.110*
0.7473 (8)	0.0933 (5)	0.1538 (4)	0.0753 (16)
	0.5000 0.4009 (6) 0.6131 (6) 0.4083 (11) 0.17933 (17) 0.1520 (7) 0.0179 (5) 0.2061 (9) 0.3376 (6) 0.1002 (5) 0.2583 (5) 0.8638 (9) 1.0145 (9) 1.0621 1.0056 1.0779 0.7473 (8)	0.5000 1.0000 0.4009 (6) 0.9596 (4) 0.6131 (6) 0.8810 (4) 0.4083 (11) 0.9609 (7) 0.17933 (17) 0.24155 (12) 0.1520 (7) 0.1887 (4) 0.0179 (5) 0.2320 (4) 0.2061 (9) 0.2892 (4) 0.3376 (6) 0.2461 (4) 0.1002 (5) 0.3654 (3) 0.2583 (5) 0.1159 (3) 0.8638 (9) 0.0429 (5) 1.0145 (9) -0.0209 (6) 1.0621 0.0296 1.0056 -0.0805 1.0779 -0.0550 0.7473 (8) 0.0933 (5)	0.5000 1.0000 0.5000 0.4009 (6) 0.9596 (4) 0.5648 (3) 0.6131 (6) 0.8810 (4) 0.5037 (5) 0.4083 (11) 0.9609 (7) 0.4380 (4) 0.17933 (17) 0.24155 (12) 0.02025 (9) 0.1520 (7) 0.1887 (4) 0.1024 (3) 0.0179 (5) 0.2320 (4) -0.0039 (5) 0.2061 (9) 0.2892 (4) -0.0615 (3) 0.3376 (6) 0.2461 (4) 0.0479 (4) 0.1002 (5) 0.3654 (3) 0.0503 (3) 0.2583 (5) 0.1159 (3) -0.0085 (2) 0.8638 (9) 0.0429 (5) 0.1327 (4) 1.0145 (9) -0.0209 (6) 0.1065 (5) 1.0621 0.0296 0.0780 1.0056 -0.0805 0.0718 1.0779 -0.0550 0.1519 0.7473 (8) 0.0933 (5) 0.1538 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru	0.0366 (2)	0.0291 (2)	0.0311 (2)	-0.01360 (15)	0.00462 (14)	-0.00054 (14)
S	0.0651 (9)	0.0567 (9)	0.0595 (9)	-0.0231 (7)	0.0200 (7)	-0.0170 (7)
N1	0.038 (2)	0.0318 (19)	0.042 (2)	-0.0128 (16)	0.0057 (17)	-0.0009 (16)
N2	0.039 (2)	0.045 (2)	0.032 (2)	-0.0127 (18)	0.0064 (16)	-0.0004 (17)
N3	0.038 (2)	0.036 (2)	0.036 (2)	-0.0148 (17)	0.0040 (16)	-0.0035 (16)
N4	0.044 (2)	0.0305 (19)	0.0313 (19)	-0.0155 (17)	0.0008 (16)	-0.0018 (15)
N5	0.046 (2)	0.0314 (19)	0.039 (2)	-0.0206 (17)	0.0010 (18)	0.0002 (16)
N6	0.041 (2)	0.0303 (19)	0.039 (2)	-0.0144 (16)	0.0103 (17)	0.0019 (16)
N7	0.076 (3)	0.056 (3)	0.053 (3)	-0.025 (3)	0.022 (3)	-0.016 (2)
C1	0.044 (3)	0.033 (2)	0.053 (3)	-0.012 (2)	0.009 (2)	-0.002 (2)
C2	0.044 (3)	0.032 (3)	0.081 (4)	-0.013 (2)	0.013 (3)	-0.004 (3)
C3	0.048 (3)	0.039 (3)	0.083 (4)	-0.015 (2)	0.011 (3)	0.018 (3)
C4	0.047 (3)	0.048 (3)	0.061 (3)	-0.020 (2)	0.007 (3)	0.016 (3)
C5	0.035 (2)	0.040 (3)	0.047 (3)	-0.011 (2)	0.008 (2)	0.007 (2)
C6	0.034 (2)	0.049 (3)	0.041 (3)	-0.015 (2)	0.002 (2)	0.005 (2)
C7	0.050 (3)	0.073 (4)	0.041 (3)	-0.026 (3)	0.002 (2)	0.017 (3)
C8	0.055 (3)	0.092 (5)	0.035 (3)	-0.034 (3)	-0.004(2)	0.003 (3)
C9	0.052 (3)	0.071 (4)	0.041 (3)	-0.028 (3)	0.002 (2)	-0.009 (3)
C10	0.046 (3)	0.046 (3)	0.041 (3)	-0.020 (2)	0.002 (2)	-0.005 (2)
C11	0.045 (3)	0.039 (3)	0.049 (3)	-0.016 (2)	0.004 (2)	-0.006 (2)
C12	0.038 (3)	0.055 (3)	0.050 (3)	-0.018 (2)	0.004 (2)	-0.010 (2)
C13	0.042 (3)	0.048 (3)	0.044 (3)	-0.007(2)	0.000 (2)	-0.013 (2)
C14	0.046 (3)	0.037 (3)	0.039 (3)	-0.010 (2)	-0.001 (2)	-0.005 (2)
C15	0.045 (3)	0.038 (2)	0.030(2)	-0.014 (2)	0.0004 (19)	-0.0069 (18)
C16	0.046 (3)	0.034 (2)	0.031 (2)	-0.017 (2)	0.0028 (19)	-0.0040 (18)
C17	0.057 (3)	0.032 (2)	0.046 (3)	-0.013 (2)	0.002 (2)	-0.004 (2)
C18	0.064 (3)	0.034 (3)	0.049 (3)	-0.026 (2)	0.003 (2)	0.001 (2)

C19	0.053 (3)	0.045 (3)	0.043 (3)	-0.027 (2)	0.004 (2)	0.002 (2)
C20	0.042 (3)	0.041 (3)	0.037 (2)	-0.018 (2)	0.003 (2)	-0.002 (2)
C21	0.049 (3)	0.041 (3)	0.047 (3)	-0.019 (2)	-0.002 (2)	-0.003 (2)
C22	0.065 (4)	0.051 (3)	0.047 (3)	-0.021 (3)	-0.009 (3)	0.002 (2)
C23	0.065 (4)	0.047 (3)	0.044 (3)	-0.023 (3)	0.005 (3)	-0.003 (2)
C24	0.057 (3)	0.037 (3)	0.043 (3)	-0.024 (2)	0.010 (2)	-0.003 (2)
C25	0.058 (3)	0.041 (3)	0.042 (3)	-0.023 (2)	0.014 (2)	-0.004 (2)
C26	0.056 (3)	0.042 (3)	0.061 (3)	-0.017 (3)	0.019 (3)	-0.003 (2)
C27	0.054 (3)	0.035 (3)	0.050 (3)	-0.020 (2)	0.012 (2)	-0.002 (2)
C28	0.041 (3)	0.047 (3)	0.064 (4)	-0.014 (2)	0.005 (2)	0.003 (3)
C29	0.043 (3)	0.047 (3)	0.059 (3)	-0.014 (2)	0.003 (2)	0.005 (2)
C30	0.044 (3)	0.042 (3)	0.048 (3)	-0.018 (2)	0.001 (2)	0.004 (2)
C31	0.047 (3)	0.030 (2)	0.048 (3)	-0.018 (2)	0.009 (2)	0.003 (2)
C32	0.056 (3)	0.029 (2)	0.042 (3)	-0.021 (2)	0.014 (2)	-0.0019 (19)
C33	0.063 (3)	0.039 (3)	0.056 (3)	-0.022 (3)	0.014 (3)	-0.004 (2)
P1	0.0660 (14)	0.0391 (10)	0.0700 (14)	-0.0214 (10)	0.0305 (11)	-0.0011 (9)
F11	0.081 (3)	0.127 (4)	0.083 (3)	-0.028 (3)	0.022 (2)	-0.014 (3)
F12	0.088 (3)	0.057 (2)	0.107 (3)	-0.037 (2)	0.051 (2)	-0.008 (2)
F13	0.103 (3)	0.045 (2)	0.123 (4)	-0.022 (2)	0.060 (3)	-0.005 (2)
P2	0.0473 (10)	0.0392 (9)	0.0432 (10)	-0.0152 (8)	0.0076 (8)	-0.0015 (8)
F21	0.112 (4)	0.068 (3)	0.104 (3)	-0.028 (2)	0.058 (3)	0.008 (2)
F22	0.096 (4)	0.054 (3)	0.268 (8)	-0.002 (2)	0.091 (5)	0.028 (4)
F23	0.297 (10)	0.212 (8)	0.097 (4)	-0.193 (8)	-0.071 (5)	0.027 (4)
P3	0.0517 (8)	0.0431 (7)	0.0573 (9)	-0.0161 (6)	0.0128 (7)	-0.0050 (6)
F31	0.170 (5)	0.068 (3)	0.100 (3)	-0.032 (3)	0.080 (4)	-0.011 (2)
F32	0.066 (3)	0.074 (3)	0.248 (8)	-0.018 (2)	-0.009 (4)	-0.045 (4)
F33	0.223 (7)	0.065 (3)	0.073 (3)	-0.002 (3)	0.052 (4)	0.006 (2)
F34	0.073 (3)	0.094 (3)	0.176 (6)	-0.031 (3)	-0.002 (3)	-0.034 (4)
F35	0.079 (3)	0.050 (2)	0.102 (3)	-0.0215 (18)	0.034 (2)	-0.0191 (19)
F36	0.078 (2)	0.0481 (19)	0.083 (3)	-0.0129 (17)	0.027 (2)	-0.0085 (18)
C40	0.076 (5)	0.045 (3)	0.071 (4)	-0.032 (3)	0.005 (3)	-0.004 (3)
C41	0.086 (5)	0.063 (4)	0.079 (5)	-0.033 (4)	0.021 (4)	-0.006 (3)
N8	0.077 (4)	0.059 (3)	0.094 (5)	-0.027 (3)	0.002 (3)	-0.015 (3)

Geometric parameters (Å, °)

Ru—N1	2.056 (4)	C17—H17	0.95
Ru—N3	2.059 (4)	C18—C19	1.360 (8)
Ru—N2	2.059 (4)	C18—H18	0.95
Ru—N4	2.064 (4)	C19—C20	1.381 (7)
Ru—N6	2.065 (4)	C19—H19	0.95
Ru—N5	2.072 (4)	C20—H20	0.95
S—C33	1.554 (6)	C21—C22	1.403 (8)
N1-C1	1.350 (6)	C21—H21	0.95
N1C5	1.363 (6)	C22—C23	1.369 (8)
N2—C6	1.345 (6)	C22—H22	0.95
N2-C10	1.357 (6)	C23—C24	1.379 (8)
N3—C11	1.339 (6)	С23—Н23	0.95

N3—C15	1.365 (6)	C24—C32	1.401 (7)
N4—C20	1.344 (6)	C24—C25	1.448 (8)
N4—C16	1.358 (6)	C25—C26	1.356 (8)
N5—C21	1.326 (7)	C26—C27	1.419 (8)
N5—C32	1.370 (6)	С26—Н26	0.95
N6—C30	1.337 (7)	C27—C28	1.402 (8)
N6-C31	1 365 (6)	C_{27} C_{31}	1 412 (7)
N7-C33	1 197 (7)	C_{28} C_{29}	1 356 (8)
N7 C25	1.197(7) 1 301(7)	C28 H28	0.05
11 - 225	1.391(7) 1.382(7)	$C_{20} = C_{20}$	1 308 (8)
$C_1 = C_2$	1.362 (7)	$C_{29} = C_{30}$	1.398 (8)
	0.95	C29—H29	0.93
$C_2 = C_3$	1.371 (9)	C30—H30	0.95
C2—H2	0.95	C31—C32	1.420 (8)
C3—C4	1.370 (9)	$P1 - F13^{1}$	1.578 (4)
С3—Н3	0.95	P1—F13	1.578 (4)
C4—C5	1.383 (7)	P1—F11	1.588 (5)
C4—H4	0.95	P1—F11 ⁱ	1.588 (5)
C5—C6	1.472 (7)	P1—F12	1.591 (3)
C6—C7	1.396 (7)	$P1$ — $F12^{i}$	1.591 (3)
C7—C8	1.366 (9)	P2—F23 ⁱⁱ	1.526 (5)
С7—Н7	0.95	P2—F23	1.526 (5)
C8—C9	1.376 (9)	P2—F22 ⁱⁱ	1.531 (4)
C8—H8	0.95	P2—F22	1.531 (4)
C9—C10	1.374 (7)	P2—F21	1.589 (4)
С9—Н9	0.95	P2—F21 ⁱⁱ	1.589 (4)
C10—H10	0.95	P3—F34	1 540 (5)
C_{11} C_{12}	1 381 (7)	P3F33	1.549(5)
C11—H11	0.95	P3F32	1.571(5)
C12 - C13	1 370 (8)	P3F31	1.571(5) 1.585(5)
C12 H12	0.05	D2 E25	1.589(3)
C_{12} -112 C_{14}	1 200 (0)	P2 E26	1.509(4)
$C_{13} = C_{14}$	1.500 (0)	$\Gamma 3 - \Gamma 30$	1.000(4)
С13—Н13	0.95		1.125 (9)
C14—C15	1.372(7)	C40—C41	1.445 (10)
C14—H14	0.95	C41—H41a	0.98
C15—C16	1.484 (7)	C41—H41b	0.98
C16—C17	1.383 (7)	C41—H41c	0.98
C17—C18	1.390 (8)		
N1—Ru—N3	96.28 (15)	N4—C20—H20	118.9
N1—Ru—N2	79.03 (16)	C19 - C20 - H20	118.9
N3—Ru—N2	88 79 (16)	N5-C21-C22	122 5 (5)
N1—Ru—N4	174 09 (15)	N5-C21-H21	118 7
$N_3 = R_1 = N_4$	78 01 (15)	C_{22} C_{21} H_{21}	118 7
$N^{2} = N^{4}$	(13)	$C_{22} = C_{21} = 1121$	118 6 (5)
	71.32(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.0 (3)
	00.09 (13)	C_{23} — C_{22} — H_{22}	120.7
N3—Ku—N6	1/4.60 (15)	C21—C22—H22	120.7
N2—Ku—N6	94.23 (16)	C22—C23—C24	120.8 (5)
N4—Ru—N6	96.25 (15)	C22—C23—H23	119.6

N1—Ru—N5	94.83 (15)	С24—С23—Н23	119.6
N3—Ru—N5	97.41 (16)	C23—C24—C32	117.4 (5)
N2—Ru—N5	171.75 (16)	C23—C24—C25	125.1 (5)
N4—Ru—N5	89.23 (14)	C32—C24—C25	117.5 (5)
N6—Ru—N5	80.03 (16)	C26—C25—N7	121.2 (5)
C1-N1-C5	118 4 (4)	$C_{26} - C_{25} - C_{24}$	122.4(5)
C1 - N1 - RU	126.2 (3)	N7_C25_C24	1164(5)
C5_N1_RU	115.4(3)	C_{25} C_{26} C_{27}	120.5(5)
C_{6} N2 C_{10}	113.4(3)	$C_{25} = C_{26} = C_{27}$	120.5(5)
C_{0} N2 DU	116.9 (4)	$C_{23} = C_{20} = H_{20}$	119.7
$C_0 = N_2 = R_U$	115.5 (3)	$C_2/-C_{20}-H_{20}$	119.7
CIO—N2—RU	125.6 (3)	$C_{28} = C_{27} = C_{31}$	117.4 (5)
C11—N3—C15	117.9 (4)	C28—C27—C26	124.4 (5)
C11—N3—RU	126.1 (3)	C31—C27—C26	118.3 (5)
C15—N3—RU	115.9 (3)	C29—C28—C27	120.3 (5)
C20—N4—C16	118.5 (4)	С29—С28—Н28	119.9
C20—N4—RU	125.6 (3)	С27—С28—Н28	119.9
C16—N4—RU	115.9 (3)	C28—C29—C30	119.2 (5)
C21—N5—C32	118.1 (4)	С28—С29—Н29	120.4
C21—N5—RU	129.4 (4)	С30—С29—Н29	120.4
C32—N5—RU	112.4 (3)	N6—C30—C29	122.9 (5)
C30—N6—C31	118.0 (4)	N6-C30-H30	118.6
C30—N6—RU	128.5 (3)	С29—С30—Н30	118.6
C31 - N6 - RU	1135(3)	N6-C31-C27	122.3 (5)
$C_{33} N_{7} C_{25}$	144 9 (6)	N6-C31-C32	122.3(3)
N1-C1-C2	121 7 (5)	C_{27} C_{31} C_{32}	110.4(4) 121.3(5)
N1 C1 H1	110.1	$N_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	121.5(5)
$C_2 = C_1 = H_1$	119.1	$N_{5} = C_{32} = C_{24}$	122.3(3)
$C_2 = C_1 = H_1$	119.1	$N_{3} = C_{32} = C_{31}$	117.3(4)
$C_3 = C_2 = C_1$	119.0 (0)	$C_{24} = C_{32} = C_{31}$	119.9 (5)
$C_3 - C_2 - H_2$	120.2	$N = C_{33} = S$	1/4.4 (6)
С1—С2—Н2	120.2	F13'	180.0 (4)
C4—C3—C2	119.3 (5)	F13'	89.6 (3)
С4—С3—Н3	120.4	F13—P1—F11	90.4 (3)
С2—С3—Н3	120.4	$F13^{i}$ P1 F11 ⁱ	90.4 (3)
C3—C4—C5	119.7 (5)	$F13 - P1 - F11^{i}$	89.6 (3)
C3—C4—H4	120.2	$F11 - P1 - F11^{i}$	180.000 (2)
C5—C4—H4	120.2	F13 ⁱ —P1—F12	90.9 (2)
N1—C5—C4	121.3 (5)	F13—P1—F12	89.1 (2)
N1—C5—C6	114.6 (4)	F11—P1—F12	90.3 (3)
C4—C5—C6	124.1 (5)	F11 ⁱ —P1—F12	89.7 (3)
N2—C6—C7	120.8 (5)	$F13^{i}$ — $P1$ — $F12^{i}$	89.1 (2)
N2—C6—C5	115.5 (4)	F13—P1—F12 ⁱ	90.9 (2)
C7—C6—C5	123.7 (5)	$F11 - P1 - F12^{i}$	89.7 (3)
C8—C7—C6	119.7 (5)	$F11^{i}$ $P1$ $F12^{i}$	90.3 (3)
С8—С7—Н7	120.2	$F12-P1-F12^{i}$	180,000 (1)
С6—С7—Н7	120.2	$F^{23i} P^{2} F^{23}$	180.0 (6)
C7 - C8 - C9	119.6 (5)	F_{23}^{ii} P_{2}^{ii} F_{23}^{ii}	89.3 (5)
C7_C8_H8	120.2	$F_{23} = F_{23} = F$	90.7(5)
	120.2	123 - 12 - 122 E22ii D2 E22	90.7(3)
U7-U0-II0	120.2	$\Gamma \angle J = \Gamma \angle - \Gamma \angle \angle$	20./(J)

C10—C9—C8	119.0 (5)	F23—P2—F22	89.3 (5)
С10—С9—Н9	120.5	F22 ⁱⁱ —P2—F22	180.0 (6)
С8—С9—Н9	120.5	F23 ⁱⁱ —P2—F21	91.9 (4)
N2—C10—C9	122.1 (5)	F23—P2—F21	88.1 (4)
N2—C10—H10	118.9	F22 ⁱⁱ —P2—F21	91.9 (3)
С9—С10—Н10	118.9	F22—P2—F21	88.1 (3)
N3—C11—C12	122.6 (5)	F23 ⁱⁱ —P2—F21 ⁱⁱ	88.1 (4)
N3—C11—H11	118.7	F23—P2—F21 ⁱⁱ	91.9 (4)
C12—C11—H11	118.7	F22 ⁱⁱ —P2—F21 ⁱⁱ	88.1 (3)
C13—C12—C11	119.5 (5)	F22—P2—F21 ⁱⁱ	91.9 (3)
C13—C12—H12	120.2	F21—P2—F21 ⁱⁱ	180.000 (2)
C11—C12—H12	120.2	F34—P3—F33	90.6 (4)
C12—C13—C14	118.6 (5)	F34—P3—F32	176.7 (4)
C12—C13—H13	120.7	F33—P3—F32	92.6 (4)
C14—C13—H13	120.7	F34—P3—F31	90.3 (4)
C15—C14—C13	119.6 (5)	F33—P3—F31	178.0 (3)
C15—C14—H14	120.2	F32—P3—F31	86.6 (4)
C13—C14—H14	120.2	F34—P3—F35	91.2 (3)
N3—C15—C14	121.7 (5)	F33—P3—F35	90.9 (2)
N3—C15—C16	114.5 (4)	F32—P3—F35	89.8 (2)
C14—C15—C16	123.7 (4)	F31—P3—F35	90.9 (2)
N4—C16—C17	121.5 (5)	F34—P3—F36	88.8 (3)
N4—C16—C15	114.7 (4)	F33—P3—F36	90.2 (2)
C17—C16—C15	123.8 (5)	F32—P3—F36	90.1 (2)
C16—C17—C18	119.0 (5)	F31—P3—F36	88.0 (2)
C16—C17—H17	120.5	F35—P3—F36	178.9 (2)
C18—C17—H17	120.5	N8-C40-C41	179.0 (8)
C19—C18—C17	119.2 (5)	C40—C41—H41A	109.5
C19—C18—H18	120.4	C40—C41—H41B	109.5
C17—C18—H18	120.4	H41A—C41—H41B	109.5
C18—C19—C20	119.7 (5)	C40—C41—H41C	109.5
C18—C19—H19	120.2	H41A—C41—H41C	109.5
С20—С19—Н19	120.2	H41B—C41—H41C	109.5
N4—C20—C19	122.1 (5)		
N3—RU—N1—C1	-92.9 (4)	C6—N2—C10—C9	-0.5 (8)
N2—RU—N1—C1	179.6 (4)	RU—N2—C10—C9	178.9 (4)
N6—RU—N1—C1	85.0 (4)	C8—C9—C10—N2	1.6 (9)
N5—RU—N1—C1	5.1 (4)	C15—N3—C11—C12	-0.8 (7)
N3—RU—N1—C5	87.3 (3)	RU-N3-C11-C12	-176.9 (4)
N2—RU—N1—C5	-0.2 (3)	N3-C11-C12-C13	-1.0 (8)
N6—RU—N1—C5	-94.8 (3)	C11—C12—C13—C14	1.2 (8)
N5—RU—N1—C5	-174.7 (3)	C12-C13-C14-C15	0.5 (7)
N1—RU—N2—C6	0.4 (3)	C11—N3—C15—C14	2.6 (7)
N3—RU—N2—C6	-96.2 (4)	RU-N3-C15-C14	179.0 (3)
N4—RU—N2—C6	-174.9 (3)	C11—N3—C15—C16	-176.1 (4)
N6—RU—N2—C6	88.3 (4)	RU-N3-C15-C16	0.3 (5)
N1—RU—N2—C10	-179.0 (4)	C13—C14—C15—N3	-2.5 (7)

N3—RU—N2—C10	84.4 (4)	C13—C14—C15—C16	176.1 (4)
N4—RU—N2—C10	5.7 (4)	C20-N4-C16-C17	3.4 (7)
N6—RU—N2—C10	-91.2 (4)	RU—N4—C16—C17	-178.3 (4)
N1—RU—N3—C11	0.1 (4)	C20—N4—C16—C15	-176.4 (4)
N2—RU—N3—C11	78.9 (4)	RU—N4—C16—C15	1.9 (5)
N4—RU—N3—C11	176.6 (4)	N3—C15—C16—N4	-1.4 (6)
N5—RU—N3—C11	-95.6 (4)	C14—C15—C16—N4	179.9 (4)
N1—RU—N3—C15	-176.0(3)	N3—C15—C16—C17	178.8 (4)
N2—RU—N3—C15	-97.2 (3)	C14—C15—C16—C17	0.1 (7)
N4—RU—N3—C15	0.5 (3)	N4—C16—C17—C18	-3.2 (7)
N5—RU—N3—C15	88.3 (3)	C15—C16—C17—C18	176.5 (5)
N3—RU—N4—C20	176.8 (4)	C16—C17—C18—C19	1.6 (8)
N2—RU—N4—C20	-95.9 (4)	C17—C18—C19—C20	-0.3 (8)
N6—RU—N4—C20	-0.8 (4)	C16—N4—C20—C19	-2.1(7)
N5—RU—N4—C20	79.1 (4)	RU—N4—C20—C19	179.9 (4)
N3—RU—N4—C16	-1.3 (3)	C18—C19—C20—N4	0.6 (8)
N2—RU—N4—C16	86.0 (3)	C_{32} N5 C_{21} C_{22}	-0.8(7)
N6-RU-N4-C16	-178.9(3)	RU - N5 - C21 - C22	176.3 (4)
N5— RU — $N4$ — $C16$	-99.0(3)	N5-C21-C22-C23	0.6 (8)
N1—RU—N5—C21	-93.1 (4)	C_{21} C_{22} C_{23} C_{24}	-0.2(8)
N3—RU—N5—C21	3.9 (4)	C_{22} C_{23} C_{24} C_{32}	-0.1(8)
N4—RU—N5—C21	82.6 (4)	C22—C23—C24—C25	178.8 (5)
N6—RU—N5—C21	179.1 (4)	C_{33} N7 $-C_{25}$ $-C_{26}$	5.7 (12)
N1 - RU - N5 - C32	84.1 (3)	C33—N7—C25—C24	-172.5(8)
N3—RU—N5—C32	-178.9(3)	C23—C24—C25—C26	-178.5(5)
N4—RU—N5—C32	-100.2(3)	C32—C24—C25—C26	0.3 (7)
N6—RU—N5—C32	-3.7(3)	C_{23} C_{24} C_{25} N_{7}	-0.4(8)
N1— RU — $N6$ — $C30$	87.0 (4)	C_{32} C_{24} C_{25} N7	178.5 (4)
N2—RU—N6—C30	8.1 (4)	N7—C25—C26—C27	-177.5(5)
N4—RU—N6—C30	-89.8 (4)	C24—C25—C26—C27	0.6 (8)
N5— RU — $N6$ — $C30$	-177.9(4)	C_{25} C_{26} C_{27} C_{28}	179.5 (5)
N1—RU—N6—C31	-91.9 (3)	C_{25} C_{26} C_{27} C_{31}	-2.0(8)
N2— RU — $N6$ — $C31$	-170.8(3)	C_{31} $-C_{27}$ $-C_{28}$ $-C_{29}$	0.7 (8)
N4—RU—N6—C31	91.4 (3)	C_{26} C_{27} C_{28} C_{29}	179.2 (5)
N5—RU—N6—C31	3 2 (3)	C_{27} C_{28} C_{29} C_{30}	-0.8(8)
C5-N1-C1-C2	-0.1(7)	C_{31} N_{6} C_{30} C_{29}	-0.2(7)
RU - N1 - C1 - C2	-1799(4)	RU—N6—C30—C29	-1790(4)
N1-C1-C2-C3	0.8 (8)	$C_{28} - C_{29} - C_{30} - N_{6}$	0 5 (8)
C1 - C2 - C3 - C4	-0.7(8)	C_{30} N6 C_{31} C_{27}	0.1 (6)
$C_2 = C_3 = C_4 = C_5$	0.0 (8)	RU - N6 - C31 - C27	1791(3)
C1 - N1 - C5 - C4	-0.7(7)	C_{30} N6 C_{31} C_{32}	179.1(3) 178 8 (4)
RII N1 C5 C4	179.2(4)	RU = N6 = C31 = C32	-22(5)
C1 - N1 - C5 - C6	-179.8(4)	$C_{28} - C_{27} - C_{31} - N_{6}$	-0.3(7)
RU - N1 - C5 - C6	0.0 (5)	$C_{26} = C_{27} = C_{31} = N_{6}$	-1789(4)
C_{3} C_{4} C_{5} N_{1}	0.7 (8)	C_{28} C_{27} C_{31} C_{32}	-1789(4)
C_{3} C_{4} C_{5} C_{6}	179 8 (5)	$C_{26} = C_{27} = C_{31} = C_{32}$	2 4 (7)
C10 N2 C6 C7	-16(7)	$C_{20} = C_{27} = C_{37} = C_{32}$	2.7(7)
$RII_N_2_C_6_C_7$	1.0(7) 178 9 (4)	$\frac{1}{21} - \frac{1}{10} - \frac{1}{22} - \frac{1}{24}$	-1771(3)
NU = N2 = UU = U/U	1/0.7 (4)	10-103-032-024	1//.1(3)

C10—N2—C6—C5	178.9 (4)	C21—N5—C32—C31	-178.7 (4)
RU—N2—C6—C5	-0.6 (5)	RU-N5-C32-C31	3.8 (5)
N1-C5-C6-N2	0.4 (6)	C23—C24—C32—N5	-0.1 (7)
C4—C5—C6—N2	-178.7 (5)	C25—C24—C32—N5	-179.0 (4)
N1—C5—C6—C7	-179.1 (5)	C23—C24—C32—C31	179.1 (4)
C4—C5—C6—C7	1.8 (8)	C25—C24—C32—C31	0.1 (7)
N2—C6—C7—C8	2.7 (8)	N6-C31-C32-N5	-1.1 (6)
C5—C6—C7—C8	-177.9 (5)	C27—C31—C32—N5	177.6 (4)
C6—C7—C8—C9	-1.6 (9)	N6-C31-C32-C24	179.8 (4)
C7—C8—C9—C10	-0.5 (9)	C27—C31—C32—C24	-1.5 (7)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+1.