organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Dihydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide

Liang Xu,^a Shan-Shan Huang,^b Bao-Jing Zhang,^b Shou-Yu Wang^b and Hou-Li Zhang^b*

^aCollege of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, People's Republic of China, and ^bDalian Medical University, Dalian 116044, People's Republic of China Correspondence e-mail: dlzhanghouli@163.com

Received 2 September 2009; accepted 4 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.148; data-to-parameter ratio = 15.0.

In the title compound, $C_{17}H_{18}N_2O_6$, the molecule is slightly twisted, with a dihedral angle of 18.1 (2)° between the two benzene rings. In the crystal structure, molecules are linked into a network by intermolecular N-H···O, O-H···N and O-H···O hydrogen bonds. An intramolecular O-H···O hydrogen bond is also present.

Related literature

For the biological properties of Schiff base compounds, see: Brückner *et al.* (2000); Harrop *et al.* (2003); Ren *et al.* (2002). For the crystal structures of some Schiff bases and their complexes, see: Diao (2007); Diao *et al.* (2007, 2008); Huang *et al.* (2007); Li *et al.* (2007).

Experimental

Crystal data	
$C_{17}H_{18}N_2O_6$	a = 14.601 (1) Å
$M_r = 346.33$	b = 11.030 (2) Å
Orthorhombic. <i>Pbca</i>	c = 20.006 (2) Å

 $V = 3222.0 (7) \text{ Å}^{3}$ Z = 8Mo *K*\alpha radiation

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2000)	
$T_{\rm min} = 0.978, T_{\rm max} = 0.978$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.148$ S = 1.033520 reflections 234 parameters 1 restraint $\mu = 0.11 \text{ mm}^{-1}$ T = 298 K $0.20 \times 0.20 \times 0.20 \text{ mm}$

18590 measured reflections 3520 independent reflections 2166 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O5^{i}$ $O3-H3\cdots N2^{ii}$ $O3-H3\cdots O1^{ii}$ $O2-H2\cdots O1$	0.893 (10) 0.82 0.82 0.82 0.82	2.109 (13) 2.52 1.95 1.79	2.953 (2) 3.214 (3) 2.674 (2) 2.518 (2)	157 (2) 143 147 147

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project is supported by a research grant from Dalian Medical University. We are grateful to Chuan-Xun Li and Qi Zhou for their assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2345).

References

Brückner, C., Rettig, S. J. & Dolphin, D. (2000). *Inorg. Chem.* 39, 6100–6106.Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.
- Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.
- Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.
- Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). *Chem. Commun.* pp. 410-411.
- Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, 04659.

Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.

Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). *J. Med. Chem.* 45, 410–419. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2009). E65, o2412 [doi:10.1107/S1600536809035764]

2,4-Dihydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide

Liang Xu, Shan-Shan Huang, Bao-Jing Zhang, Shou-Yu Wang and Hou-Li Zhang

S1. Comment

Schiff base compounds have been found to have potential pharmacological and antitumor properties (Brückner *et al.*, 2000; Harrop *et al.*, 2003; Ren *et al.*, 2002). Recently, the crystal structures of a few Schiff base compounds derived from the reaction of aldehydes with benzohydrazides have been reported (Diao *et al.*, 2008; Diao *et al.*, 2007; Diao, 2007; Li *et al.*, 2007; Huang *et al.*, 2007). As a continuation of these studies, we report here the crystal structure of the title compound.

The title compound, $C_{17}H_{18}N_2O_6$ (Fig. 1) is slightly twisted, with a dihedral angle between the two benzene rings of 18.1 (2)°. The torsion angles C9—C8—N2—N1 and C2—C7—N1—N2 are 2.9 (2) and 7.8 (2)°, respectively. In the crystal structure, molecules are linked into a network (Fig. 2) by intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1). An intramolecular O—H···O hydrogen bond is also present.

S2. Experimental

3,4,5-Trimethoxybenzaldehyde (0.1 mmol, 19.6 mg) and 2,4-dihydroxybenzohydrazide (0.1 mmol, 16.8 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After allowing the solution to stand in air for a few days, colorless block-like crystals were formed.

S3. Refinement

H1A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93 and 0.96 Å, an O—H distance of 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(\text{aromatic C})$ and $1.5U_{eq}(O$ and methyl C).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are represented by spheres of arbitrary radius. The dashed line indicates the intramolecular O—H…O hydrogen bond.

Figure 2

The crystal structure of the title compound, viewed along the b axis. Dashed lines indicate hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted.

2,4-Dihydroxy-N'-(3,4,5-trimethoxybenzylidene)benzohydrazide

Crystal data

 $C_{17}H_{18}N_2O_6$ $M_r = 346.33$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 14.601 (1) Å b = 11.030 (2) Å c = 20.006 (2) Å V = 3222.0 (7) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.978, T_{\max} = 0.978$

Refinement

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.148$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
3520 reflections	and constrained refinement
234 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0632P)^2 + 0.9796P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.41$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

F(000) = 1456

 $\theta = 2.5 - 26.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, colorless

 $0.20 \times 0.20 \times 0.20$ mm

 $\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

18590 measured reflections

3520 independent reflections 2166 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.069$

 $h = -18 \rightarrow 18$

 $k = -12 \rightarrow 14$

 $l = -20 \rightarrow 25$

 $D_{\rm x} = 1.428 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2734 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	-0.07006 (12)	0.46657 (17)	0.36310 (9)	0.0409 (5)	
N2	0.00500 (12)	0.44220 (16)	0.40282 (9)	0.0410 (4)	
01	0.01502 (10)	0.60011 (16)	0.30628 (8)	0.0528 (5)	
02	-0.04899 (12)	0.72863 (18)	0.21335 (9)	0.0650 (5)	

Н2	-0.0112	0 7057	0 2409	0.097*
03	-0.33269(11)	0.63390 (17)	0.12189 (8)	0.057
Н3	-0 3814	0.6018	0.1322	0.0555 (5)
04	0 12167 (11)	0.13843 (16)	0.63808 (9)	0.009
05	0.12107(11) 0.28830(10)	0.21803 (14)	0.60976 (8)	0.0304(3) 0.0474(4)
06	0.20030(10) 0.31779(11)	0.37901 (16)	0.50970(0)	0.0474(4) 0.0579(5)
C1	-0.21013(15)	0.37901(10) 0.4894(2)	0.51322(0) 0.25893(12)	0.0377(5)
U1 Н1	-0.21615 (15)	0.4251	0.2886	0.0420 (3)
C^2	-0.13151(14)	0.4231 0.56173 (10)	0.2600	0.030
C2 C3	-0.12280(15)	0.50175(19)	0.20278(11) 0.21550(11)	0.0384(5)
C3	-0.12280(15)	0.0338(2)	0.21350(11) 0.16036(12)	0.0451(5)
	-0.19085(10)	0.0778 (2)	0.10930 (12)	0.0403 (0)
114 C5	-0.26856(15)	0.7408	0.1588	0.030°
C5	-0.20830(13) -0.27758(15)	0.0071(2)	0.10830(11) 0.21243(11)	0.0418(3)
	-0.27738 (13)	0.3110 (2)	0.21245 (11)	0.0421(3)
П0 С7	-0.3290	0.4015	0.2100	0.030°
C7	-0.05838(14)	0.54391(19)	0.511/5(11)	0.0396 (5)
	-0.00/24 (15)	0.3683 (2)	0.45107 (11)	0.0423 (5)
H8	-0.0652	0.3366	0.4593	0.051*
C9	0.07007(15)	0.33347 (19)	0.49349 (11)	0.0402 (5)
Clo	0.15/11 (15)	0.3793 (2)	0.48163 (11)	0.0435 (5)
HIO	0.1665	0.4351	0.4475	0.052*
CII	0.22944 (15)	0.3418 (2)	0.52056 (12)	0.0437 (6)
C12	0.21532 (15)	0.2592 (2)	0.57258 (11)	0.0411 (5)
C13	0.12835 (16)	0.2157 (2)	0.58524 (11)	0.0428 (5)
C14	0.05539 (15)	0.2521 (2)	0.54515 (11)	0.0428 (5)
H14	-0.0031	0.2219	0.5530	0.051*
C15	0.33483 (18)	0.4696 (3)	0.46434 (14)	0.0652 (8)
H15A	0.3242	0.4367	0.4206	0.098*
H15B	0.3973	0.4962	0.4677	0.098*
H15C	0.2946	0.5371	0.4717	0.098*
C16	0.3270 (2)	0.3053 (2)	0.65403 (14)	0.0655 (8)
H16A	0.3195	0.3850	0.6355	0.098*
H16B	0.3910	0.2887	0.6599	0.098*
H16C	0.2966	0.3010	0.6965	0.098*
C17	0.03536 (19)	0.0858 (3)	0.65186 (14)	0.0646 (8)
H17A	-0.0098	0.1486	0.6560	0.097*
H17B	0.0387	0.0408	0.6929	0.097*
H17C	0.0186	0.0323	0.6160	0.097*
H1A	-0.1231 (10)	0.4289 (19)	0.3709 (11)	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0320 (10)	0.0498 (11)	0.0407 (11)	-0.0008 (8)	-0.0063 (8)	0.0046 (8)
N2	0.0349 (10)	0.0496 (10)	0.0385 (11)	0.0046 (8)	-0.0062 (8)	-0.0037 (9)
01	0.0353 (9)	0.0687 (11)	0.0544 (11)	-0.0083 (8)	-0.0044 (8)	0.0092 (8)
O2	0.0514 (11)	0.0832 (13)	0.0603 (12)	-0.0237 (10)	-0.0062 (8)	0.0223 (10)
O3	0.0411 (9)	0.0797 (12)	0.0457 (10)	-0.0056 (9)	-0.0069 (8)	0.0135 (9)

O4	0.0475 (10)	0.0716 (11)	0.0561 (11)	-0.0065 (8)	-0.0100 (8)	0.0231 (9)
05	0.0397 (9)	0.0548 (9)	0.0477 (10)	0.0062 (7)	-0.0115 (7)	-0.0020 (8)
O6	0.0359 (9)	0.0830 (12)	0.0548 (11)	-0.0034 (8)	-0.0009 (8)	0.0142 (9)
C1	0.0383 (12)	0.0432 (12)	0.0445 (13)	-0.0004 (9)	0.0003 (10)	0.0051 (10)
C2	0.0321 (11)	0.0461 (12)	0.0371 (12)	0.0001 (9)	0.0016 (9)	0.0015 (10)
C3	0.0340 (12)	0.0543 (13)	0.0411 (13)	-0.0075 (10)	0.0014 (10)	0.0021 (11)
C4	0.0445 (14)	0.0559 (14)	0.0391 (13)	-0.0046 (11)	0.0008 (10)	0.0104 (11)
C5	0.0347 (12)	0.0586 (14)	0.0320 (12)	0.0022 (10)	-0.0010 (9)	-0.0001 (10)
C6	0.0349 (12)	0.0469 (12)	0.0444 (13)	-0.0044 (10)	-0.0017 (10)	0.0005 (11)
C7	0.0305 (11)	0.0465 (12)	0.0417 (13)	-0.0004 (9)	0.0013 (9)	-0.0037 (10)
C8	0.0350 (12)	0.0497 (13)	0.0423 (13)	-0.0002 (10)	-0.0053 (10)	-0.0020 (11)
C9	0.0368 (12)	0.0463 (12)	0.0374 (13)	0.0027 (9)	-0.0051 (10)	-0.0036 (10)
C10	0.0419 (13)	0.0529 (13)	0.0356 (12)	0.0032 (10)	-0.0025 (10)	0.0037 (10)
C11	0.0326 (12)	0.0558 (14)	0.0427 (13)	0.0010 (10)	0.0004 (10)	-0.0020 (11)
C12	0.0354 (12)	0.0479 (12)	0.0399 (13)	0.0062 (10)	-0.0062 (10)	-0.0028 (10)
C13	0.0437 (13)	0.0464 (12)	0.0382 (13)	0.0023 (10)	-0.0032 (10)	0.0016 (10)
C14	0.0338 (12)	0.0519 (13)	0.0428 (13)	-0.0014 (10)	-0.0033 (10)	-0.0012 (11)
C15	0.0477 (16)	0.0815 (19)	0.0664 (18)	-0.0079 (13)	0.0057 (14)	0.0125 (15)
C16	0.0667 (18)	0.0671 (17)	0.0629 (18)	0.0099 (14)	-0.0232 (15)	-0.0177 (14)
C17	0.0556 (16)	0.0703 (17)	0.0678 (18)	-0.0114 (14)	-0.0058 (14)	0.0237 (14)

Geometric parameters (Å, °)

N1—C7	1.346 (3)	C4—H4	0.9300
N1—N2	1.380 (2)	C5—C6	1.386 (3)
N1—H1A	0.893 (10)	С6—Н6	0.9300
N2—C8	1.276 (3)	C8—C9	1.464 (3)
O1—C7	1.243 (2)	C8—H8	0.9300
O2—C3	1.345 (3)	C9—C14	1.385 (3)
O2—H2	0.8200	C9—C10	1.388 (3)
O3—C5	1.351 (3)	C10—C11	1.376 (3)
O3—H3	0.8200	C10—H10	0.9300
O4—C13	1.362 (3)	C11—C12	1.399 (3)
O4—C17	1.415 (3)	C12—C13	1.381 (3)
O5—C12	1.376 (2)	C13—C14	1.393 (3)
O5—C16	1.425 (3)	C14—H14	0.9300
O6-C11	1.362 (3)	C15—H15A	0.9600
O6—C15	1.420 (3)	C15—H15B	0.9600
C1—C6	1.375 (3)	C15—H15C	0.9600
C1—C2	1.400 (3)	C16—H16A	0.9600
C1—H1	0.9300	C16—H16B	0.9600
C2—C3	1.410 (3)	C16—H16C	0.9600
C2—C7	1.462 (3)	C17—H17A	0.9600
C3—C4	1.378 (3)	C17—H17B	0.9600
C4—C5	1.377 (3)	C17—H17C	0.9600
C7—N1—N2	117.54 (17)	C10—C9—C8	120.8 (2)
C7—N1—H1A	122.6 (15)	C11—C10—C9	119.8 (2)

N2—N1—H1A	119.8 (15)	C11—C10—H10	120.1
C8—N2—N1	116.67 (18)	C9—C10—H10	120.1
С3—О2—Н2	109.5	O6—C11—C10	125.2 (2)
С5—О3—Н3	109.5	O6—C11—C12	114.60 (19)
C13—O4—C17	118.17 (18)	C10-C11-C12	120.2 (2)
C12—O5—C16	114.84 (18)	O5—C12—C13	119.9 (2)
C11—O6—C15	116.89 (19)	O5—C12—C11	120.2 (2)
C6—C1—C2	121.7 (2)	C13—C12—C11	119.9 (2)
С6—С1—Н1	119.1	O4—C13—C12	115.19 (19)
C2—C1—H1	119.1	O4—C13—C14	124.9 (2)
C1—C2—C3	117.1 (2)	C12—C13—C14	119.9 (2)
C1—C2—C7	124.0 (2)	C9—C14—C13	119.9 (2)
C3—C2—C7	118.85 (19)	C9—C14—H14	120.1
O2—C3—C4	116.8 (2)	C13—C14—H14	120.1
O2—C3—C2	122.2 (2)	O6—C15—H15A	109.5
C4—C3—C2	121.0 (2)	O6—C15—H15B	109.5
C5—C4—C3	120.3 (2)	H15A—C15—H15B	109.5
С5—С4—Н4	119.8	O6—C15—H15C	109.5
C3—C4—H4	119.8	H15A—C15—H15C	109.5
O3—C5—C4	117.2 (2)	H15B—C15—H15C	109.5
O3—C5—C6	122.6 (2)	O5—C16—H16A	109.5
C4—C5—C6	120.1 (2)	O5—C16—H16B	109.5
C1—C6—C5	119.7 (2)	H16A—C16—H16B	109.5
С1—С6—Н6	120.2	O5—C16—H16C	109.5
С5—С6—Н6	120.2	H16A—C16—H16C	109.5
O1—C7—N1	119.5 (2)	H16B—C16—H16C	109.5
O1—C7—C2	120.3 (2)	O4—C17—H17A	109.5
N1—C7—C2	120.25 (19)	O4—C17—H17B	109.5
N2—C8—C9	119.9 (2)	H17A—C17—H17B	109.5
N2—C8—H8	120.1	O4—C17—H17C	109.5
С9—С8—Н8	120.1	H17A—C17—H17C	109.5
C14—C9—C10	120.3 (2)	H17B—C17—H17C	109.5
C14—C9—C8	118.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A····O5 ⁱ	0.89 (1)	2.11 (1)	2.953 (2)	157 (2)
O3—H3…N2 ⁱⁱ	0.82	2.52	3.214 (3)	143
O3—H3…O1 ⁱⁱ	0.82	1.95	2.674 (2)	147
O2—H2…O1	0.82	1.79	2.518 (2)	147

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x-1/2, y, -z+1/2.