organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1-Carb­­oxy-2-(4-nitro­phen­yl)ethanaminium bromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 19 August 2009; accepted 1 September 2009; online 9 September 2009)

In the crystal structure of the title compound, C9H11N2O4+·Br, the ethanaminium cations and Br anions are linked together by N—H⋯Br and O—H⋯Br hydrogen bonding. In the cation, the nitro group is twisted with respect to the benzene ring, making a dihedral angle of 21.43 (5)°.

Related literature

For amino acid derivatives as ligands for the construction of metal-organic frameworks, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N2O4+·Br

  • Mr = 291.11

  • Monoclinic, P 21

  • a = 5.5378 (11) Å

  • b = 7.4158 (15) Å

  • c = 14.246 (3) Å

  • β = 91.15 (3)°

  • V = 584.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.76, Tmax = 0.84

  • 5994 measured reflections

  • 2633 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.04

  • 2633 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1202 Friedel pairs

  • Flack parameter: −0.025 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.89 2.54 3.355 (3) 153
N1—H1B⋯Br1 0.89 2.46 3.340 (2) 168
N1—H1C⋯Br1ii 0.89 2.59 3.440 (3) 161
O1—H1⋯Br1iii 0.85 2.38 3.174 (3) 155
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x-1, y, z; (iii) x-1, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Amino acid derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Fu et al., 2007). We report here the crystal structure of the title compound.

The title compound is built up from a Br- anion and a protonated amino group cation (Fig. 1). The nitro group is twisted from the benzene ring plane by a dihedral angle of 21.43 (5)°, and the 2-aminopropanoate substituent group is a zig-zag chain.

The crystal packing is stabilized by cation-anion N—H···Br and O—H···Br H-bonds building an infinite two-dimensional network developing parallel to the (1 1 0) plane (Table 1).

Related literature top

For amino acid derivatives as ligands for the construction of metal-organic frameworks, see: Fu et al. (2007).

Experimental top

A mixture of 2-amino-3-phenylpropanoic acid (4.71g, 30 mmol), concentrated nitric acid (4.0 ml, 14 M) and concentrated sulfuric acid (1.5 ml, 18 M) was stirred at 383 K for 3 h under nitrogen atmosphere. The resulting solution was poured into ice water (100 ml), then filtered and washed with distilled water. The crude product was recrystallized with distilled water by adding dilute HBr (4 ml, 4 M) to yield colorless needle-like single crystals.

Refinement top

H atoms were positioned geometrically and treated as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.98 Å (methine) and N—H = 0.89 Å, O—H = 0.85 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(S)-1-Carboxy-2-(4-nitrophenyl)ethanaminium bromide top
Crystal data top
C9H11N2O4+·BrF(000) = 292
Mr = 291.11Dx = 1.653 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2427 reflections
a = 5.5378 (11) Åθ = 3.1–27.4°
b = 7.4158 (15) ŵ = 3.52 mm1
c = 14.246 (3) ÅT = 298 K
β = 91.15 (3)°Needle, colourless
V = 584.9 (2) Å30.40 × 0.05 × 0.05 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
2633 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.1°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.76, Tmax = 0.84l = 1818
5994 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2633 reflectionsΔρmax = 0.26 e Å3
146 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 1202 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (11)
Crystal data top
C9H11N2O4+·BrV = 584.9 (2) Å3
Mr = 291.11Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.5378 (11) ŵ = 3.52 mm1
b = 7.4158 (15) ÅT = 298 K
c = 14.246 (3) Å0.40 × 0.05 × 0.05 mm
β = 91.15 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2633 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2427 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.84Rint = 0.039
5994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.31 e Å3
2633 reflectionsAbsolute structure: Flack (1983), 1202 Friedel pairs
146 parametersAbsolute structure parameter: 0.025 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1236 (3)0.1957 (5)0.09374 (15)0.0526 (5)
C70.3705 (6)0.3156 (4)0.2428 (2)0.0396 (7)
H7A0.39260.20300.27660.048*
H7B0.52660.37460.24050.048*
C90.0598 (5)0.1544 (4)0.1348 (2)0.0365 (8)
C80.2848 (6)0.2725 (4)0.1416 (2)0.0346 (7)
H80.41580.20790.11090.041*
C60.2007 (5)0.4342 (4)0.29749 (19)0.0361 (7)
C20.0984 (6)0.7325 (5)0.3539 (2)0.0488 (10)
H20.12950.85560.35730.059*
C40.1471 (7)0.4776 (6)0.3932 (2)0.0488 (10)
H40.27950.43090.42420.059*
C30.0974 (6)0.6591 (5)0.3970 (2)0.0474 (10)
C50.0006 (6)0.3660 (4)0.3434 (2)0.0418 (8)
H50.03330.24330.34020.050*
C10.2497 (6)0.6173 (5)0.3048 (2)0.0427 (8)
H1D0.38600.66400.27650.051*
O40.3908 (5)0.7160 (9)0.5059 (2)0.1119 (15)
N20.2621 (7)0.7828 (7)0.4470 (3)0.0783 (12)
O30.2547 (8)0.9417 (7)0.4254 (4)0.1225 (16)
N10.2332 (4)0.4392 (4)0.08589 (18)0.0375 (6)
H1A0.22840.41210.02500.056*
H1B0.34900.52000.09710.056*
H1C0.09150.48460.10240.056*
O10.0979 (5)0.0009 (3)0.1777 (2)0.0697 (9)
H10.02900.06510.17330.104*
Br10.72355 (5)0.69798 (6)0.112290 (18)0.04362 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0343 (11)0.0513 (12)0.0719 (14)0.0139 (17)0.0077 (10)0.010 (2)
C70.0327 (17)0.0424 (18)0.0434 (19)0.0014 (14)0.0097 (13)0.0022 (14)
C90.0373 (16)0.032 (2)0.0404 (16)0.0075 (12)0.0008 (13)0.0020 (12)
C80.0312 (16)0.0363 (16)0.0361 (16)0.0054 (12)0.0016 (12)0.0049 (13)
C60.0351 (16)0.0460 (18)0.0267 (15)0.0042 (14)0.0064 (12)0.0013 (13)
C20.060 (2)0.047 (3)0.0399 (17)0.0022 (17)0.0021 (16)0.0023 (15)
C40.0346 (18)0.076 (3)0.036 (2)0.0130 (19)0.0044 (14)0.0054 (17)
C30.0413 (19)0.065 (3)0.0356 (17)0.0010 (17)0.0043 (13)0.0170 (16)
C50.0438 (19)0.0447 (19)0.0368 (18)0.0144 (14)0.0050 (15)0.0010 (14)
C10.045 (2)0.052 (2)0.0310 (17)0.0108 (15)0.0004 (14)0.0024 (14)
O40.074 (2)0.156 (4)0.108 (2)0.038 (3)0.0436 (19)0.074 (3)
N20.064 (3)0.099 (3)0.072 (3)0.001 (2)0.002 (2)0.046 (2)
O30.123 (4)0.095 (3)0.150 (4)0.034 (3)0.027 (3)0.037 (3)
N10.0355 (14)0.0441 (16)0.0330 (13)0.0151 (12)0.0001 (10)0.0006 (12)
O10.072 (2)0.0427 (15)0.092 (2)0.0215 (13)0.0365 (17)0.0197 (14)
Br10.04125 (17)0.04304 (17)0.04656 (17)0.01590 (17)0.00035 (11)0.00473 (18)
Geometric parameters (Å, º) top
O2—C91.201 (3)C2—H20.9300
C7—C61.515 (4)C4—C51.371 (5)
C7—C81.543 (4)C4—C31.375 (6)
C7—H7A0.9700C4—H40.9300
C7—H7B0.9700C3—N21.486 (5)
C9—O11.318 (4)C5—H50.9300
C9—C81.525 (4)C1—H1D0.9300
C8—N11.493 (4)O4—N21.217 (5)
C8—H80.9800N2—O31.219 (6)
C6—C11.388 (5)N1—H1A0.8900
C6—C51.393 (4)N1—H1B0.8900
C2—C31.369 (5)N1—H1C0.8900
C2—C11.395 (5)O1—H10.8500
C6—C7—C8114.7 (3)C5—C4—H4120.3
C6—C7—H7A108.6C3—C4—H4120.3
C8—C7—H7A108.6C2—C3—C4122.1 (3)
C6—C7—H7B108.6C2—C3—N2117.9 (4)
C8—C7—H7B108.6C4—C3—N2119.9 (4)
H7A—C7—H7B107.6C4—C5—C6120.8 (3)
O2—C9—O1125.0 (3)C4—C5—H5119.6
O2—C9—C8124.5 (3)C6—C5—H5119.6
O1—C9—C8110.5 (3)C6—C1—C2121.2 (3)
N1—C8—C9107.1 (2)C6—C1—H1D119.4
N1—C8—C7112.2 (2)C2—C1—H1D119.4
C9—C8—C7114.4 (3)O4—N2—O3126.2 (5)
N1—C8—H8107.6O4—N2—C3117.0 (5)
C9—C8—H8107.6O3—N2—C3116.8 (4)
C7—C8—H8107.6C8—N1—H1A109.5
C1—C6—C5118.4 (3)C8—N1—H1B109.5
C1—C6—C7119.0 (3)H1A—N1—H1B109.5
C5—C6—C7122.6 (3)C8—N1—H1C109.5
C3—C2—C1118.0 (3)H1A—N1—H1C109.5
C3—C2—H2121.0H1B—N1—H1C109.5
C1—C2—H2121.0C9—O1—H1109.3
C5—C4—C3119.3 (3)
O2—C9—C8—N11.9 (4)C5—C4—C3—N2177.2 (3)
O1—C9—C8—N1176.0 (3)C3—C4—C5—C60.6 (5)
O2—C9—C8—C7123.1 (3)C1—C6—C5—C41.2 (5)
O1—C9—C8—C758.9 (4)C7—C6—C5—C4179.1 (3)
C6—C7—C8—N155.2 (4)C5—C6—C1—C22.3 (5)
C6—C7—C8—C967.1 (3)C7—C6—C1—C2179.6 (3)
C8—C7—C6—C199.1 (3)C3—C2—C1—C61.7 (5)
C8—C7—C6—C582.9 (4)C2—C3—N2—O4159.6 (4)
C1—C2—C3—C40.2 (5)C4—C3—N2—O421.8 (5)
C1—C2—C3—N2178.4 (3)C2—C3—N2—O320.1 (6)
C5—C4—C3—C21.3 (5)C4—C3—N2—O3158.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.543.355 (3)153
N1—H1B···Br10.892.463.340 (2)168
N1—H1C···Br1ii0.892.593.440 (3)161
O1—H1···Br1iii0.852.383.174 (3)155
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC9H11N2O4+·Br
Mr291.11
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.5378 (11), 7.4158 (15), 14.246 (3)
β (°) 91.15 (3)
V3)584.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.76, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
5994, 2633, 2427
Rint0.039
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.04
No. of reflections2633
No. of parameters146
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31
Absolute structureFlack (1983), 1202 Friedel pairs
Absolute structure parameter0.025 (11)

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.543.355 (3)152.9
N1—H1B···Br10.892.463.340 (2)168.2
N1—H1C···Br1ii0.892.593.440 (3)161.1
O1—H1···Br1iii0.852.383.174 (3)155.3
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y, z; (iii) x1, y1, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University for Professor Ren-Gen Xiong.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds