Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Bis(2-thienyl)acetylene

Emily M. Harcourt, ${ }^{\text {a }}$ Daniel E. Lynch ${ }^{\text {b }}$ and Darren G. Hamilton ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA, and ${ }^{\mathbf{b}}$ Exilica Limited, The Technocentre, Puma Way, Coventry CV1 2TT, UK Correspondence e-mail: hamilton@mtholyoke.edu

Received 2 September 2009; accepted 11 September 2009
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; disorder in main residue; R factor $=0.073 ; w R$ factor $=0.173$; data-to-parameter ratio $=14.6$.

The planar [maximum deviation 0.0066 (4) Å] symmetrical molecule of the title compound, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2}$, lies across a crystallographic inversion centre. The thiophene rings are rotationally disordered about the acetylene bond, with the two pseudo inversion-related S atoms in 0.80:0.20 occupancy sites. The $\mathrm{C} \equiv \mathrm{C}$ bond distance is 1.195 (9) \AA.

Related literature

For the preparation of the title compound, related diarylacetylenes and cobalt-containing metallocenes derived from these materials, see: Harrison et al. (1997); Harcourt et al. (2008). For recent synthetic organic uses, see: Yu \& Rovis (2006); Geyer et al. (2008). The metal center employed in an acetylene cyclooligomerization may also remain as an integral component of the product, or products, see: Rausch \& Genetti (1970). For spectroscopic data, see: Mio et al. (2002).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2}$
$M_{r}=190.29$
Orthorhombic, Pbcn

$$
\begin{aligned}
& a=10.6325(15) \AA \\
& b=10.8713(15) \AA \\
& c=7.5600(5) \AA
\end{aligned}
$$

$V=873.85(18) \AA^{3}$	$\mu=0.54 \mathrm{~mm}^{-1}$
$Z=4$	$T=120 \mathrm{~K}$
Mo K α radiation	$0.55 \times 0.05 \times 0.03 \mathrm{~mm}$
Data collection	
Nonius KappaCCD diffractometer	3812 measured reflections
Absorption correction: multi-scan	849 independent reflections
$\quad(S A D A B S ;$ Sheldrick, 2003	493 reflections with $I>2 \sigma(I)$
$\quad T_{\min }=0.755, T_{\max }=0.984$	$R_{\text {int }}=0.129$
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$	58 parameters
$w R\left(F^{2}\right)=0.173$	H -atom parameters constrained
$S=1.08$	$\Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3}$
849 reflections	$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

We thank the Donors of the American Chemical Society Petroleum Research Fund (Award 45312), the Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher Scholar Award to DGH, 2005-2010) and the EPSRC National Crystallography Service (University of Southampton, UK) for their support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2008).

References

Geyer, A. M., Wiedner, E. S., Gary, J. B., Gdula, R. L., Kuhlmann, N. C., Johnson, M. J. A., Dunietz, B. D. \& Kampf, J. W. (2008). J. Am. Chem. Soc. 130, 8984-8999.
Harcourt, E. M., Yonis, S. R., Lynch, D. E. \& Hamilton, D. G. (2008). Organometallics, 27, 1653-1656.
Harrison, R. M., Brotin, T., Noll, B. C. \& Michl, J. (1997). Organometallics, 16, 3401-3412.
Mio, M. J., Kopel, L. C., Braun, J. B., Gadzikwa, T. L., Hull, K. L., Brisbois, R. G., Markworth, C. J. \& Grieco, P. A. (2002). Org. Lett. 4, 3199-3202.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rausch, M. D. \& Genetti, R. A. (1970). J. Org. Chem.35, 3888-3897.
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yu, R. \& Rovis, T. (2006). J. Am. Chem. Soc. 128, 2782-2783.

supporting information

Acta Cryst. (2009). E65, o2484 [doi:10.1107/S1600536809036812]

Bis(2-thienyl)acetylene

Emily M. Harcourt, Daniel E. Lynch and Darren G. Hamilton

S1. Comment

Diarylacetylenes are versatile components of metal-mediated cycloaddition reactions. Their relative ease of preparation from palladium catalyzed coupling of aryl iodides to acetylene has ensured their continued use in the development of new synthetic routes, for example, nitrogen containing heterocycles (Yu \& Rovis, 2006), and new catalytic reaction methodologies such as alkyne-nitrile cross metathesis (Geyer et al., 2008). The metal center employed in an acetylene cyclooligomerization may also remain as an integral component of the product, or products, as described in the seminal work of Rausch \& Genetti (1970). The title compound bis(2-thienyl)acetylene (I) is found to have inversion symmetry coincident with crystallographic symmetry (Fig. 1). However, the two 2-thiophene residues are rotationally disordered about the acetylene bond with the two pseudo-inversion related S atoms having $80 / 20 \%$ occupancy. The $C-C$ triple bond distance is 1.195 (9) \AA.

S2. Experimental

The title compound was prepared by Sonogashira coupling of two equivalents of 2-iodothiophene to acetylene under standard conditions (Harrison et al., 1997). Full experimental details (Harcourt et al., 2008) and spectroscopic data (Mio et al., 2002) have been previously published.

S3. Refinement

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$. The isotropic displacement parameters for all H atoms were set equal to $1.25 U_{\mathrm{eq}}$ of the carrier atom. The refined site occupancy factors for the disordered atoms $(\mathrm{S} 1, \mathrm{C} 3, \mathrm{H} 3)$ and $(\mathrm{S} 3, \mathrm{C} 1, \mathrm{H} 1)$ of the pseudocentrosymmetrically related thiophene rings were 0.80 (1), and 0.20 (1) respectively. Structure factor file checks indicate that there is only one listed reflection that is likely to have been affected by the beamstop.

Figure 1
Molecular configuration and atom-numbering scheme for (I) showing inversion symmetry [symmetry code: (a) $-x,-y+1$, $-z]$. Rotationally disordered thiophene S/C atom pairs are S1, C3 (S.O.F. 0.80) and S3, C1 (S.O.F. 0.20). Displacement ellipsoids are drawn at the 50% probability level.

Bis(2-thienyl)acetylene

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2}$
$M_{r}=190.29$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=10.6325$ (15) \AA
$b=10.8713$ (15) \AA
$c=7.5600(5) \AA$
$V=873.85(18) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: Bruker Nonius FR591 rotating anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$F(000)=392$
$D_{\mathrm{x}}=1.446 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1041 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Needle, colourless
$0.55 \times 0.05 \times 0.03 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.173$
$S=1.08$
849 reflections
58 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$T_{\text {min }}=0.755, T_{\text {max }}=0.984$
3812 measured reflections
849 independent reflections
493 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.129$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-13 \rightarrow 11$
$k=-13 \rightarrow 12$
$l=-9 \rightarrow 8$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.050 P)^{2}+3.1085 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3}$

Special details

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.675726 .

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	$0.17278(13)$	$0.28773(15)$	$0.17139(19)$	$0.0303(6)$	0.80
C1	$0.17278(13)$	$0.28773(15)$	$0.17139(19)$	$0.0303(6)$	0.20
H1	0.1105	0.2380	0.2263	0.038^{*}	0.20
C2	$0.1671(4)$	$0.4188(5)$	$0.0513(6)$	$0.0220(12)$	
C3	$0.2949(3)$	$0.4642(3)$	$-0.0126(4)$	$0.0291(9)$	0.80
H3	0.3142	0.5342	-0.0827	0.036^{*}	0.80
S3	$0.2949(3)$	$0.4642(3)$	$-0.0126(4)$	$0.0291(9)$	0.20
C4	$0.3820(5)$	$0.3703(5)$	$0.0635(6)$	$0.0295(15)$	
H4	0.4705	0.3749	0.0468	0.037^{*}	
C5	$0.3285(4)$	$0.2786(5)$	$0.1572(6)$	$0.0271(13)$	
H5	0.3757	0.2144	0.2105	0.034^{*}	
C6	$0.0498(4)$	$0.4768(5)$	$0.0149(6)$	$0.0235(14)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0283(8)$	$0.0314(11)$	$0.0311(8)$	$0.0002(8)$	$-0.0017(6)$	$0.0030(7)$
C1	$0.0283(8)$	$0.0314(11)$	$0.0311(8)$	$0.0002(8)$	$-0.0017(6)$	$0.0030(7)$
C2	$0.022(2)$	$0.023(3)$	$0.021(2)$	$-0.001(2)$	$-0.0019(19)$	$0.000(2)$
C3	$0.0264(16)$	$0.029(2)$	$0.0322(16)$	$0.0028(17)$	$-0.0049(13)$	$-0.0064(15)$
S3	$0.0264(16)$	$0.029(2)$	$0.0322(16)$	$0.0028(17)$	$-0.0049(13)$	$-0.0064(15)$
C4	$0.021(2)$	$0.035(4)$	$0.032(3)$	$-0.002(3)$	$0.003(2)$	$-0.008(3)$
C5	$0.030(3)$	$0.027(3)$	$0.025(2)$	$0.012(3)$	$-0.007(2)$	$-0.006(2)$
C6	$0.025(2)$	$0.021(4)$	$0.025(2)$	$-0.002(2)$	$-0.001(2)$	$-0.001(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 2$	$1.691(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.349(7)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.424(6)$	$\mathrm{C} 4-\mathrm{H} 4$	0.95
$\mathrm{C} 2-\mathrm{C} 3$	$1.525(5)$	$\mathrm{C} 5-\mathrm{H} 5$	0.95
$\mathrm{C} 3-\mathrm{C} 4$	$1.493(6)$	$\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$1.195(9)$
$\mathrm{C} 3-\mathrm{H} 3$	0.95		
			$116.4(4)$
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 3$	$125.2(4)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	121.8
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{S} 1$	$120.5(4)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	121.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$114.2(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	122.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$102.1(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	$178.7(7)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	128.9	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 2$	

supporting information

$\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.9(4)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$

Symmetry code: (i) $-x,-y+1,-z$.

