metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris{2-meth­­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato-κ2O,O′}tris­­(thio­cyanato-κN)praseodymium(III) monohydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 24 August 2009; accepted 25 September 2009; online 3 October 2009)

The asymmetric unit of title compound, [Pr(NCS)3(C15H15NO2)3]·H2O, consists of three Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)imino­meth­yl]phenol (HL) ligands, three independent thio­cyanate anions and an uncoordinated water mol­ecule. The PrIII ion is nine-coordinated. The thio­cyanate anions coordinate to the PrIII ion via the N atoms and the three HL ligands chelate the PrIII ion via the phenoxy and meth­oxy O atoms. The protonated imine N atoms are involved in intra­molecular hydrogen bonds with the phenolate groups.

Related literature

For related structures, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]); Liu et al. (2009[Liu, J.-F., Xian, H.-D. & Zhao, G.-L. (2009). Acta Cryst. E65, m650.]); Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]); Xian et al. (2008[Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.]). For background to our studies of complexes of Schiff bases derived from o-vanillin, see: Zhu et al. (2005[Zhu, Z.-L., Zhao, G.-L., Zhang, P.-H. & Shen, L.-J. (2005). Chem. Res. Chin. 16, 45-48.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(NCS)3(C15H15NO2)3]·H2O

  • Mr = 1057.01

  • Monoclinic, P 21 /c

  • a = 16.6770 (6) Å

  • b = 14.2420 (5) Å

  • c = 22.2021 (8) Å

  • β = 105.810 (2)°

  • V = 5073.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.04 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.819, Tmax = 0.956

  • 39629 measured reflections

  • 8927 independent reflections

  • 6217 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.01

  • 8927 reflections

  • 589 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Pr—O5 2.384 (2)
Pr—O1 2.409 (2)
Pr—O3 2.419 (2)
Pr—N4 2.515 (3)
Pr—N6 2.532 (3)
Pr—N5 2.562 (3)
Pr—O4 2.773 (2)
Pr—O2 2.790 (2)
Pr—O6 2.838 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.88 2.572 (3) 137
N2—H2A⋯O3 0.86 1.85 2.552 (3) 138
N3—H3A⋯O5 0.86 1.88 2.585 (3) 138

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes have been received much attention for many years. By introducing diverse groups of different shapes and functions, Schiff bases also have potential applications in material science, biological, encapsulation, hydrometallurgy, et al. O-vanillin derived Schiff base complexes have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis. Interested in this field, we have been synthesized several analogous Schiff bases derived from o-vanillin and prepared their transitional and rare metal complexes further. In a few of articles we have reported our partial research results (Zhao et al., 2007; Zhu et al., 2005; Xian et al., 2008; Li et al., 2008). Herein, we describe a new PrIII complex.

The structure of complex (1) was shown in Fig.1 and the coordination environment of PrIII was shown in Fig. 2. In this complex the PrIII is nine-coordinated by three nitrogen atoms from three thiocyanate ions and six O atoms from the Schiff base 2-methoxy-6-[(4-methylphenyl)iminomethyl]phenol (HL), which can be described as a distorted monocapped square antiprism. HL ligands coordinate to the PrIII ion with bidentate-chelate mode using oxygen atom from deprotonated phenolic hydroxyl groups and methoxyl groups. The Pr—O and Pr—N bond distances were listed in Table 1, The distances between PrIII and methoxyl O atoms are obvious longer than Pr—O(phenolic) bond distances, which are similar to the analogous complexes (Zhao et al., 2007; Li et al., 2008, Liu et al., 2009). The thiocyanate anions coordinate the PrIII with N terminal with distances from 2.515–2.562 Å.

The hydrogen bonds and ππ weak non-covalent interactions lend stability to the structure. The stacking plot of this compound was shown in Fig. 3. In the structure, In HL ligand, three protons of phenolic hydroxyl groups considered to have transferred to imine N atoms involve in forming intramolecular hydrogen bonds. There are no classic hydrogen bonds between the adjacent molecules, but exist C—H···S weak hydrogen bonds. The ππ interactions exist both intra and extra molecules between the approximate paralleled participating benzene rings, which may be the primary forces keep the complex molecules packing together.

Related literature top

For related structures, see: Li et al. (2008); Liu et al. (2009); Zhao et al. (2007); Xian et al. (2008). For background to our studies of complexes of Schiff bases derived from o-vanillin, see: Zhu et al. (2005).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. The Schiff base ligand 2-methoxy-6-[(4-methylphenyl)iminomethyl]phenol (HL) was synthesized from condensation of o-vanillin and p-methylaniline. The title compound was synthesized by traditional method. 3 mmol HL ligand was dissolved in methanol, then 1 mmol Pr(NO3)3 (in methanol) was added to the upper solution. The mixture solution was stirred for 2 h at room temperature. Furthermore, 3 mmol NH4SCN (dissolved in methanol) was added. The mixture was stirred again for 8 h at room temperature. At last, deposit was filtered out and the reddish-brown solution was kept in the open air. The red crystal was obtained after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms coordinated water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Structure description top

Schiff base complexes have been received much attention for many years. By introducing diverse groups of different shapes and functions, Schiff bases also have potential applications in material science, biological, encapsulation, hydrometallurgy, et al. O-vanillin derived Schiff base complexes have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis. Interested in this field, we have been synthesized several analogous Schiff bases derived from o-vanillin and prepared their transitional and rare metal complexes further. In a few of articles we have reported our partial research results (Zhao et al., 2007; Zhu et al., 2005; Xian et al., 2008; Li et al., 2008). Herein, we describe a new PrIII complex.

The structure of complex (1) was shown in Fig.1 and the coordination environment of PrIII was shown in Fig. 2. In this complex the PrIII is nine-coordinated by three nitrogen atoms from three thiocyanate ions and six O atoms from the Schiff base 2-methoxy-6-[(4-methylphenyl)iminomethyl]phenol (HL), which can be described as a distorted monocapped square antiprism. HL ligands coordinate to the PrIII ion with bidentate-chelate mode using oxygen atom from deprotonated phenolic hydroxyl groups and methoxyl groups. The Pr—O and Pr—N bond distances were listed in Table 1, The distances between PrIII and methoxyl O atoms are obvious longer than Pr—O(phenolic) bond distances, which are similar to the analogous complexes (Zhao et al., 2007; Li et al., 2008, Liu et al., 2009). The thiocyanate anions coordinate the PrIII with N terminal with distances from 2.515–2.562 Å.

The hydrogen bonds and ππ weak non-covalent interactions lend stability to the structure. The stacking plot of this compound was shown in Fig. 3. In the structure, In HL ligand, three protons of phenolic hydroxyl groups considered to have transferred to imine N atoms involve in forming intramolecular hydrogen bonds. There are no classic hydrogen bonds between the adjacent molecules, but exist C—H···S weak hydrogen bonds. The ππ interactions exist both intra and extra molecules between the approximate paralleled participating benzene rings, which may be the primary forces keep the complex molecules packing together.

For related structures, see: Li et al. (2008); Liu et al. (2009); Zhao et al. (2007); Xian et al. (2008). For background to our studies of complexes of Schiff bases derived from o-vanillin, see: Zhu et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the PrIII.
[Figure 3] Fig. 3. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and ππ stacking interactions.
Tris{2-methoxy-6-[(4-methylphenyl)iminiomethyl]phenolato- κ2O,O'}tris(thiocyanato-κN)praseodymium(III) monohydrate top
Crystal data top
[Pr(NCS)3(C15H15NO2)3]·H2OF(000) = 2160
Mr = 1057.01Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4646 reflections
a = 16.6770 (6) Åθ = 1.7–25.0°
b = 14.2420 (5) ŵ = 1.14 mm1
c = 22.2021 (8) ÅT = 296 K
β = 105.810 (2)°Block, red
V = 5073.8 (3) Å30.18 × 0.16 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
8927 independent reflections
Radiation source: fine-focus sealed tube6217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.819, Tmax = 0.956k = 1616
39629 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1769P]
where P = (Fo2 + 2Fc2)/3
8927 reflections(Δ/σ)max = 0.043
589 parametersΔρmax = 0.55 e Å3
9 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Pr(NCS)3(C15H15NO2)3]·H2OV = 5073.8 (3) Å3
Mr = 1057.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6770 (6) ŵ = 1.14 mm1
b = 14.2420 (5) ÅT = 296 K
c = 22.2021 (8) Å0.18 × 0.16 × 0.04 mm
β = 105.810 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
8927 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6217 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.956Rint = 0.067
39629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0399 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
8927 reflectionsΔρmin = 0.40 e Å3
589 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.212161 (10)0.224658 (13)0.892590 (8)0.04806 (5)
S10.05204 (9)0.13555 (12)0.73132 (8)0.1423 (6)
S20.25332 (6)0.10349 (9)1.01053 (6)0.0999 (4)
S30.33254 (9)0.39684 (10)1.10377 (5)0.1191 (5)
N10.47905 (15)0.12318 (18)1.00203 (11)0.0503 (7)
H1A0.42580.12700.98740.060*
N20.45556 (16)0.3989 (2)0.93078 (12)0.0610 (8)
H2A0.41040.37490.93560.073*
N30.02353 (15)0.07807 (18)0.91915 (11)0.0509 (7)
H3A0.02530.09560.91780.061*
N40.1111 (2)0.1421 (3)0.80336 (15)0.0965 (12)
N50.21804 (18)0.0642 (2)0.94577 (15)0.0773 (10)
N60.27758 (18)0.2739 (2)1.00482 (13)0.0686 (9)
O10.35015 (12)0.15979 (16)0.91093 (9)0.0540 (6)
O1W0.83860 (12)0.06713 (16)1.23844 (9)0.676 (14)
H1WB0.861 (3)0.1157 (15)1.259 (3)1.014*
H1WA0.8812 (17)0.031 (3)1.247 (6)1.014*
O20.28259 (14)0.19880 (17)0.79334 (9)0.0645 (7)
O30.30182 (13)0.35646 (15)0.88812 (9)0.0568 (6)
O40.16395 (15)0.35905 (18)0.79935 (10)0.0716 (8)
O50.08437 (13)0.20881 (14)0.92029 (10)0.0568 (6)
O60.12286 (14)0.38343 (16)0.91669 (11)0.0653 (7)
C10.48704 (18)0.1579 (2)0.89903 (14)0.0476 (8)
C20.40013 (19)0.1696 (2)0.87554 (14)0.0485 (8)
C30.3681 (2)0.1914 (2)0.81113 (14)0.0534 (9)
C40.4189 (2)0.2025 (2)0.77316 (15)0.0631 (10)
H4A0.39630.21630.73100.076*
C50.5054 (2)0.1931 (3)0.79749 (17)0.0714 (11)
H5A0.54010.20210.77150.086*
C60.5392 (2)0.1708 (3)0.85876 (15)0.0626 (10)
H6A0.59660.16400.87430.075*
C70.52250 (19)0.1356 (2)0.96227 (15)0.0525 (9)
H7A0.58010.12940.97640.063*
C80.2427 (3)0.2025 (4)0.72728 (16)0.0934 (15)
H8C0.19960.15590.71660.140*
H8B0.28310.19050.70460.140*
H8A0.21890.26360.71650.140*
C90.50968 (19)0.1039 (2)1.06729 (14)0.0503 (8)
C100.5913 (2)0.0798 (2)1.09475 (15)0.0602 (10)
H10A0.62860.07301.07060.072*
C110.6171 (2)0.0662 (3)1.15818 (17)0.0731 (12)
H11A0.67230.04961.17640.088*
C120.5645 (3)0.0761 (3)1.19596 (17)0.0784 (12)
C130.4827 (3)0.0982 (3)1.16702 (18)0.0867 (13)
H13A0.44510.10361.19100.104*
C140.4550 (2)0.1128 (3)1.10301 (16)0.0698 (11)
H14A0.39960.12851.08450.084*
C150.5951 (3)0.0605 (4)1.26608 (18)0.1164 (18)
H15A0.65370.04681.27740.175*
H15B0.56560.00871.27770.175*
H15C0.58550.11611.28750.175*
C160.3713 (2)0.4573 (3)0.83420 (15)0.0647 (10)
C170.3005 (2)0.4080 (2)0.83957 (15)0.0581 (9)
C180.2269 (2)0.4138 (3)0.78989 (15)0.0658 (10)
C190.2230 (3)0.4700 (3)0.73899 (18)0.0919 (14)
H19A0.17340.47520.70750.110*
C200.2929 (3)0.5189 (4)0.7343 (2)0.1121 (17)
H20A0.28990.55570.69910.134*
C210.3658 (3)0.5140 (3)0.7802 (2)0.0966 (14)
H21A0.41200.54760.77640.116*
C220.4475 (2)0.4495 (3)0.88076 (17)0.0688 (11)
H22A0.49370.48160.87550.083*
C230.0823 (3)0.3711 (3)0.7574 (2)0.0994 (16)
H23C0.06650.31520.73290.149*
H23A0.08280.42330.73000.149*
H23B0.04300.38310.78100.149*
C240.5290 (2)0.3785 (2)0.97819 (17)0.0617 (10)
C250.6074 (2)0.3848 (3)0.9690 (2)0.0816 (13)
H25A0.61400.40570.93100.098*
C260.6757 (3)0.3600 (3)1.0167 (2)0.0972 (16)
H26A0.72820.36381.01000.117*
C270.6694 (3)0.3296 (3)1.0739 (2)0.0918 (15)
C280.5902 (3)0.3248 (3)1.08205 (19)0.0828 (13)
H28A0.58410.30501.12050.099*
C290.5200 (2)0.3484 (3)1.03516 (18)0.0700 (11)
H29A0.46740.34401.04180.084*
C300.7450 (3)0.3013 (4)1.1258 (3)0.134 (2)
H30A0.72780.28281.16200.201*
H30B0.78260.35361.13640.201*
H30C0.77260.24981.11200.201*
C310.0547 (2)0.2409 (2)0.92143 (16)0.0581 (9)
C320.0262 (2)0.2684 (2)0.92020 (14)0.0499 (8)
C330.0432 (2)0.3660 (2)0.91852 (15)0.0593 (10)
C340.0174 (3)0.4306 (3)0.91777 (19)0.0815 (12)
H34A0.00580.49420.91570.098*
C350.0957 (3)0.4025 (3)0.9200 (2)0.1002 (15)
H35A0.13600.44770.92010.120*
C360.1150 (2)0.3107 (3)0.9221 (2)0.0858 (13)
H36A0.16800.29320.92400.103*
C370.0748 (2)0.1450 (2)0.92179 (15)0.0590 (9)
H37A0.12790.12890.92410.071*
C380.1510 (3)0.4783 (3)0.9233 (2)0.0907 (13)
H38A0.10830.51770.93120.136*
H38B0.16320.49820.88540.136*
H38C0.20040.48290.95760.136*
C390.03682 (19)0.0199 (2)0.91820 (14)0.0481 (8)
C400.1077 (2)0.0589 (2)0.92811 (15)0.0583 (9)
H40A0.14920.02080.93560.070*
C410.1163 (2)0.1552 (3)0.92669 (15)0.0654 (10)
H41A0.16450.18120.93310.079*
C420.0564 (2)0.2142 (2)0.91618 (15)0.0634 (10)
C430.0147 (2)0.1732 (3)0.90665 (17)0.0705 (11)
H43A0.05640.21130.89940.085*
C440.0246 (2)0.0768 (3)0.90785 (15)0.0616 (10)
H44A0.07280.05050.90160.074*
C450.0661 (3)0.3192 (3)0.9153 (2)0.0917 (14)
H45A0.11860.33520.92260.138*
H45B0.02160.34640.94750.138*
H45C0.06410.34310.87530.138*
C460.0431 (3)0.1384 (3)0.77308 (18)0.0851 (13)
C470.23374 (19)0.0036 (3)0.97341 (17)0.0634 (10)
C480.2994 (2)0.3241 (3)1.04593 (15)0.0606 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.04023 (9)0.05242 (11)0.04853 (9)0.00331 (9)0.00700 (7)0.00349 (9)
S10.0901 (9)0.1280 (12)0.1672 (13)0.0361 (8)0.0356 (9)0.0146 (10)
S20.0681 (6)0.0948 (8)0.1484 (9)0.0321 (6)0.0494 (6)0.0558 (7)
S30.1689 (11)0.1297 (10)0.0717 (6)0.0744 (9)0.0550 (7)0.0385 (7)
N10.0439 (14)0.0559 (17)0.0505 (14)0.0037 (12)0.0118 (12)0.0006 (13)
N20.0553 (16)0.0563 (18)0.0695 (17)0.0134 (14)0.0138 (14)0.0052 (15)
N30.0420 (14)0.0533 (16)0.0595 (15)0.0020 (13)0.0170 (12)0.0010 (13)
N40.072 (2)0.125 (3)0.082 (2)0.030 (2)0.0035 (18)0.030 (2)
N50.0625 (18)0.068 (2)0.109 (2)0.0044 (16)0.0355 (17)0.0196 (18)
N60.0703 (19)0.080 (2)0.0535 (16)0.0100 (17)0.0143 (14)0.0075 (16)
O10.0445 (11)0.0681 (15)0.0517 (11)0.0025 (11)0.0169 (10)0.0038 (11)
O1W0.417 (16)0.84 (3)0.71 (3)0.240 (19)0.055 (18)0.08 (3)
O20.0581 (14)0.0866 (18)0.0438 (12)0.0115 (12)0.0053 (10)0.0044 (12)
O30.0620 (13)0.0592 (14)0.0446 (11)0.0091 (11)0.0070 (10)0.0031 (10)
O40.0628 (15)0.0871 (19)0.0544 (13)0.0039 (13)0.0019 (11)0.0023 (13)
O50.0460 (12)0.0459 (13)0.0803 (14)0.0021 (10)0.0206 (11)0.0009 (11)
O60.0650 (14)0.0465 (13)0.0861 (15)0.0098 (11)0.0235 (12)0.0025 (12)
C10.0449 (17)0.0469 (18)0.0513 (17)0.0022 (14)0.0138 (14)0.0014 (15)
C20.0491 (17)0.0484 (19)0.0484 (17)0.0025 (15)0.0141 (14)0.0029 (15)
C30.0558 (19)0.0514 (19)0.0510 (18)0.0091 (16)0.0113 (15)0.0025 (15)
C40.076 (2)0.068 (2)0.0471 (18)0.0055 (19)0.0194 (17)0.0036 (16)
C50.075 (2)0.085 (3)0.065 (2)0.004 (2)0.0367 (18)0.0041 (19)
C60.0455 (18)0.082 (3)0.066 (2)0.0067 (18)0.0252 (16)0.0004 (19)
C70.0413 (17)0.053 (2)0.064 (2)0.0025 (15)0.0150 (15)0.0008 (16)
C80.079 (3)0.148 (4)0.0434 (19)0.025 (3)0.0012 (19)0.015 (2)
C90.0553 (19)0.0458 (18)0.0510 (17)0.0022 (15)0.0166 (15)0.0007 (15)
C100.057 (2)0.064 (2)0.0584 (19)0.0117 (17)0.0137 (16)0.0112 (17)
C110.072 (2)0.071 (3)0.066 (2)0.007 (2)0.0019 (19)0.011 (2)
C120.109 (3)0.069 (3)0.058 (2)0.017 (2)0.023 (2)0.0123 (19)
C130.111 (3)0.093 (3)0.068 (2)0.027 (3)0.045 (2)0.016 (2)
C140.073 (2)0.077 (3)0.062 (2)0.018 (2)0.0223 (18)0.0130 (19)
C150.176 (5)0.111 (4)0.057 (2)0.027 (4)0.022 (3)0.019 (3)
C160.074 (2)0.066 (2)0.057 (2)0.0043 (19)0.0226 (18)0.0108 (18)
C170.071 (2)0.055 (2)0.0474 (17)0.0033 (18)0.0154 (16)0.0001 (16)
C180.073 (2)0.069 (2)0.0513 (19)0.011 (2)0.0100 (18)0.0007 (18)
C190.105 (3)0.107 (4)0.058 (2)0.021 (3)0.012 (2)0.019 (2)
C200.137 (4)0.124 (4)0.077 (3)0.017 (3)0.032 (3)0.048 (3)
C210.124 (3)0.087 (3)0.091 (3)0.004 (3)0.049 (3)0.029 (2)
C220.080 (2)0.055 (2)0.079 (2)0.0105 (19)0.034 (2)0.0011 (19)
C230.077 (3)0.101 (4)0.093 (3)0.015 (2)0.022 (2)0.002 (3)
C240.062 (2)0.0446 (19)0.075 (2)0.0155 (17)0.0123 (18)0.0109 (17)
C250.063 (2)0.079 (3)0.103 (3)0.020 (2)0.022 (2)0.005 (2)
C260.053 (2)0.089 (3)0.138 (4)0.021 (2)0.008 (3)0.007 (3)
C270.068 (3)0.069 (3)0.115 (3)0.013 (2)0.015 (2)0.011 (3)
C280.095 (3)0.060 (2)0.082 (3)0.011 (2)0.004 (2)0.003 (2)
C290.063 (2)0.059 (2)0.084 (3)0.0101 (19)0.012 (2)0.006 (2)
C300.090 (3)0.117 (4)0.156 (5)0.012 (3)0.031 (3)0.005 (4)
C310.0517 (19)0.055 (2)0.070 (2)0.0084 (16)0.0207 (16)0.0052 (17)
C320.0500 (18)0.0463 (18)0.0528 (17)0.0045 (16)0.0129 (14)0.0030 (16)
C330.069 (2)0.046 (2)0.065 (2)0.0025 (18)0.0207 (17)0.0036 (16)
C340.088 (3)0.048 (2)0.114 (3)0.012 (2)0.038 (2)0.001 (2)
C350.093 (3)0.067 (3)0.151 (4)0.033 (2)0.051 (3)0.007 (3)
C360.061 (2)0.072 (3)0.134 (3)0.014 (2)0.043 (2)0.000 (3)
C370.0483 (18)0.060 (2)0.074 (2)0.0020 (17)0.0248 (16)0.0042 (18)
C380.112 (3)0.053 (2)0.117 (3)0.022 (2)0.046 (3)0.015 (2)
C390.0469 (17)0.0478 (18)0.0482 (17)0.0041 (15)0.0107 (14)0.0002 (15)
C400.062 (2)0.057 (2)0.0601 (19)0.0042 (17)0.0231 (16)0.0003 (17)
C410.075 (2)0.062 (2)0.060 (2)0.0146 (19)0.0194 (18)0.0018 (18)
C420.085 (3)0.051 (2)0.0443 (17)0.004 (2)0.0014 (17)0.0044 (16)
C430.065 (2)0.058 (2)0.083 (2)0.009 (2)0.0117 (19)0.005 (2)
C440.054 (2)0.061 (2)0.064 (2)0.0017 (18)0.0073 (17)0.0072 (18)
C450.120 (3)0.057 (2)0.088 (3)0.003 (3)0.013 (3)0.009 (2)
C460.082 (3)0.097 (3)0.068 (2)0.031 (2)0.007 (2)0.012 (2)
C470.0391 (17)0.074 (3)0.081 (2)0.0064 (17)0.0235 (17)0.007 (2)
C480.065 (2)0.072 (2)0.0493 (18)0.0131 (19)0.0227 (16)0.0090 (18)
Geometric parameters (Å, º) top
Pr—O52.384 (2)C15—H15A0.9600
Pr—O12.409 (2)C15—H15B0.9600
Pr—O32.419 (2)C15—H15C0.9600
Pr—N42.515 (3)C16—C171.406 (5)
Pr—N62.532 (3)C16—C221.406 (5)
Pr—N52.562 (3)C16—C211.428 (5)
Pr—O42.773 (2)C17—C181.412 (4)
Pr—O22.790 (2)C18—C191.372 (5)
Pr—O62.838 (2)C19—C201.386 (6)
S1—C461.605 (4)C19—H19A0.9300
S2—C471.632 (4)C20—C211.358 (6)
S3—C481.625 (4)C20—H20A0.9300
N1—C71.298 (4)C21—H21A0.9300
N1—C91.426 (4)C22—H22A0.9300
N1—H1A0.8600C23—H23C0.9600
N2—C221.299 (4)C23—H23A0.9600
N2—C241.411 (4)C23—H23B0.9600
N2—H2A0.8600C24—C251.380 (5)
N3—C371.292 (4)C24—C291.382 (5)
N3—C391.412 (4)C25—C261.373 (5)
N3—H3A0.8600C25—H25A0.9300
N4—C461.152 (5)C26—C271.372 (6)
N5—C471.135 (4)C26—H26A0.9300
N6—C481.138 (4)C27—C281.382 (6)
O1—C21.299 (4)C27—C301.513 (6)
O1W—H1WB0.8600C28—C291.380 (5)
O1W—H1WA0.8600C28—H28A0.9300
O2—C31.376 (4)C29—H29A0.9300
O2—C81.437 (4)C30—H30A0.9600
O3—C171.299 (4)C30—H30B0.9600
O4—C181.368 (4)C30—H30C0.9600
O4—C231.436 (4)C31—C371.407 (5)
O5—C321.289 (4)C31—C321.412 (5)
O6—C331.364 (4)C31—C361.417 (5)
O6—C381.425 (4)C32—C331.421 (4)
C1—C71.403 (4)C33—C341.363 (5)
C1—C21.410 (4)C34—C351.380 (6)
C1—C61.419 (4)C34—H34A0.9300
C2—C31.418 (4)C35—C361.351 (6)
C3—C41.357 (5)C35—H35A0.9300
C4—C51.403 (5)C36—H36A0.9300
C4—H4A0.9300C37—H37A0.9300
C5—C61.361 (5)C38—H38A0.9600
C5—H5A0.9300C38—H38B0.9600
C6—H6A0.9300C38—H38C0.9600
C7—H7A0.9300C39—C441.373 (5)
C8—H8C0.9600C39—C401.377 (4)
C8—H8B0.9600C40—C411.378 (5)
C8—H8A0.9600C40—H40A0.9300
C9—C141.368 (5)C41—C421.374 (5)
C9—C101.375 (4)C41—H41A0.9300
C10—C111.370 (5)C42—C431.390 (5)
C10—H10A0.9300C42—C451.503 (5)
C11—C121.376 (5)C43—C441.383 (5)
C11—H11A0.9300C43—H43A0.9300
C12—C131.377 (5)C44—H44A0.9300
C12—C151.517 (5)C45—H45A0.9600
C13—C141.385 (5)C45—H45B0.9600
C13—H13A0.9300C45—H45C0.9600
C14—H14A0.9300
O5—Pr—O1143.11 (7)C12—C15—H15C109.5
O5—Pr—O3133.63 (7)H15A—C15—H15C109.5
O1—Pr—O374.44 (7)H15B—C15—H15C109.5
O5—Pr—N472.84 (10)C17—C16—C22120.6 (3)
O1—Pr—N4110.96 (10)C17—C16—C21119.3 (3)
O3—Pr—N4128.27 (10)C22—C16—C21120.0 (4)
O5—Pr—N687.03 (9)O3—C17—C16121.8 (3)
O1—Pr—N678.71 (9)O3—C17—C18119.7 (3)
O3—Pr—N673.74 (8)C16—C17—C18118.5 (3)
N4—Pr—N6157.10 (11)O4—C18—C19126.4 (3)
O5—Pr—N573.82 (8)O4—C18—C17112.8 (3)
O1—Pr—N570.44 (8)C19—C18—C17120.8 (4)
O3—Pr—N5139.89 (8)C18—C19—C20120.3 (4)
N4—Pr—N583.07 (12)C18—C19—H19A119.9
N6—Pr—N580.87 (10)C20—C19—H19A119.9
O5—Pr—O499.22 (7)C21—C20—C19121.1 (4)
O1—Pr—O4117.40 (7)C21—C20—H20A119.4
O3—Pr—O459.36 (7)C19—C20—H20A119.4
N4—Pr—O474.87 (10)C20—C21—C16119.9 (4)
N6—Pr—O4120.21 (9)C20—C21—H21A120.0
N5—Pr—O4157.94 (9)C16—C21—H21A120.0
O5—Pr—O2142.14 (7)N2—C22—C16122.3 (3)
O1—Pr—O259.64 (6)N2—C22—H22A118.8
O3—Pr—O270.85 (7)C16—C22—H22A118.8
N4—Pr—O269.63 (9)O4—C23—H23C109.5
N6—Pr—O2130.75 (8)O4—C23—H23A109.5
N5—Pr—O2105.95 (9)H23C—C23—H23A109.5
O4—Pr—O266.44 (7)O4—C23—H23B109.5
O5—Pr—O658.33 (7)H23C—C23—H23B109.5
O1—Pr—O6143.12 (7)H23A—C23—H23B109.5
O3—Pr—O675.60 (7)C25—C24—C29119.9 (3)
N4—Pr—O6104.35 (10)C25—C24—N2122.8 (3)
N6—Pr—O672.62 (9)C29—C24—N2117.2 (3)
N5—Pr—O6125.46 (9)C26—C25—C24119.3 (4)
O4—Pr—O661.99 (7)C26—C25—H25A120.4
O2—Pr—O6127.57 (7)C24—C25—H25A120.4
C7—N1—C9127.3 (3)C27—C26—C25122.6 (4)
C7—N1—H1A116.4C27—C26—H26A118.7
C9—N1—H1A116.4C25—C26—H26A118.7
C22—N2—C24128.2 (3)C26—C27—C28117.0 (4)
C22—N2—H2A115.9C26—C27—C30122.0 (5)
C24—N2—H2A115.9C28—C27—C30121.0 (5)
C37—N3—C39128.8 (3)C29—C28—C27122.3 (4)
C37—N3—H3A115.6C29—C28—H28A118.9
C39—N3—H3A115.6C27—C28—H28A118.9
C46—N4—Pr145.4 (4)C28—C29—C24118.9 (4)
C47—N5—Pr169.0 (3)C28—C29—H29A120.5
C48—N6—Pr157.1 (3)C24—C29—H29A120.5
C2—O1—Pr126.68 (18)C27—C30—H30A109.5
H1WB—O1W—H1WA99.00C27—C30—H30B109.5
C3—O2—C8116.8 (3)H30A—C30—H30B109.5
C3—O2—Pr114.19 (17)C27—C30—H30C109.5
C8—O2—Pr128.6 (2)H30A—C30—H30C109.5
C17—O3—Pr126.99 (19)H30B—C30—H30C109.5
C18—O4—C23117.6 (3)C37—C31—C32120.0 (3)
C18—O4—Pr115.42 (19)C37—C31—C36120.7 (3)
C23—O4—Pr126.8 (2)C32—C31—C36119.4 (3)
C32—O5—Pr131.5 (2)O5—C32—C31122.7 (3)
C33—O6—C38117.8 (3)O5—C32—C33119.3 (3)
C33—O6—Pr115.25 (19)C31—C32—C33118.0 (3)
C38—O6—Pr126.9 (2)C34—C33—O6127.0 (3)
C7—C1—C2120.5 (3)C34—C33—C32120.5 (3)
C7—C1—C6119.7 (3)O6—C33—C32112.4 (3)
C2—C1—C6119.8 (3)C33—C34—C35120.6 (4)
O1—C2—C1121.8 (3)C33—C34—H34A119.7
O1—C2—C3120.4 (3)C35—C34—H34A119.7
C1—C2—C3117.8 (3)C36—C35—C34121.2 (4)
C4—C3—O2125.9 (3)C36—C35—H35A119.4
C4—C3—C2121.7 (3)C34—C35—H35A119.4
O2—C3—C2112.5 (3)C35—C36—C31120.2 (4)
C3—C4—C5120.0 (3)C35—C36—H36A119.9
C3—C4—H4A120.0C31—C36—H36A119.9
C5—C4—H4A120.0N3—C37—C31123.7 (3)
C6—C5—C4120.6 (3)N3—C37—H37A118.2
C6—C5—H5A119.7C31—C37—H37A118.2
C4—C5—H5A119.7O6—C38—H38A109.5
C5—C6—C1120.2 (3)O6—C38—H38B109.5
C5—C6—H6A119.9H38A—C38—H38B109.5
C1—C6—H6A119.9O6—C38—H38C109.5
N1—C7—C1123.4 (3)H38A—C38—H38C109.5
N1—C7—H7A118.3H38B—C38—H38C109.5
C1—C7—H7A118.3C44—C39—C40120.0 (3)
O2—C8—H8C109.5C44—C39—N3117.7 (3)
O2—C8—H8B109.5C40—C39—N3122.3 (3)
H8C—C8—H8B109.5C39—C40—C41119.1 (3)
O2—C8—H8A109.5C39—C40—H40A120.5
H8C—C8—H8A109.5C41—C40—H40A120.5
H8B—C8—H8A109.5C42—C41—C40122.5 (3)
C14—C9—C10120.1 (3)C42—C41—H41A118.8
C14—C9—N1117.4 (3)C40—C41—H41A118.8
C10—C9—N1122.4 (3)C41—C42—C43117.3 (3)
C11—C10—C9119.1 (3)C41—C42—C45122.1 (4)
C11—C10—H10A120.4C43—C42—C45120.6 (4)
C9—C10—H10A120.4C44—C43—C42121.1 (4)
C10—C11—C12122.6 (4)C44—C43—H43A119.4
C10—C11—H11A118.7C42—C43—H43A119.4
C12—C11—H11A118.7C39—C44—C43119.9 (3)
C11—C12—C13117.0 (3)C39—C44—H44A120.0
C11—C12—C15121.2 (4)C43—C44—H44A120.0
C13—C12—C15121.8 (4)C42—C45—H45A109.5
C12—C13—C14121.6 (4)C42—C45—H45B109.5
C12—C13—H13A119.2H45A—C45—H45B109.5
C14—C13—H13A119.2C42—C45—H45C109.5
C9—C14—C13119.5 (3)H45A—C45—H45C109.5
C9—C14—H14A120.3H45B—C45—H45C109.5
C13—C14—H14A120.3N4—C46—S1178.8 (5)
C12—C15—H15A109.5N5—C47—S2177.4 (4)
C12—C15—H15B109.5N6—C48—S3178.4 (3)
H15A—C15—H15B109.5
O5—Pr—N4—C4639.5 (6)C6—C1—C2—C31.8 (5)
O1—Pr—N4—C46179.4 (6)C8—O2—C3—C411.4 (5)
O3—Pr—N4—C4693.0 (6)Pr—O2—C3—C4162.1 (3)
N6—Pr—N4—C4669.0 (7)C8—O2—C3—C2168.2 (3)
N5—Pr—N4—C46114.7 (6)Pr—O2—C3—C218.3 (3)
O4—Pr—N4—C4665.4 (6)O1—C2—C3—C4179.6 (3)
O2—Pr—N4—C46135.4 (6)C1—C2—C3—C41.1 (5)
O6—Pr—N4—C4610.2 (6)O1—C2—C3—O20.7 (4)
O5—Pr—N5—C47142.0 (17)C1—C2—C3—O2178.5 (3)
O1—Pr—N5—C4728.7 (16)O2—C3—C4—C5179.9 (3)
O3—Pr—N5—C471.5 (17)C2—C3—C4—C50.5 (5)
N4—Pr—N5—C47143.9 (17)C3—C4—C5—C61.5 (6)
N6—Pr—N5—C4752.4 (17)C4—C5—C6—C10.8 (6)
O4—Pr—N5—C47143.8 (16)C7—C1—C6—C5179.6 (3)
O2—Pr—N5—C4777.5 (17)C2—C1—C6—C50.9 (5)
O6—Pr—N5—C47113.4 (17)C9—N1—C7—C1177.5 (3)
O5—Pr—N6—C4891.9 (7)C2—C1—C7—N11.0 (5)
O1—Pr—N6—C48122.3 (7)C6—C1—C7—N1179.7 (3)
O3—Pr—N6—C4845.4 (7)C7—N1—C9—C14166.5 (3)
N4—Pr—N6—C48120.0 (7)C7—N1—C9—C1011.5 (5)
N5—Pr—N6—C48166.0 (7)C14—C9—C10—C110.8 (5)
O4—Pr—N6—C487.0 (8)N1—C9—C10—C11177.2 (3)
O2—Pr—N6—C4890.8 (7)C9—C10—C11—C120.4 (6)
O6—Pr—N6—C4834.2 (7)C10—C11—C12—C131.7 (6)
O5—Pr—O1—C2160.6 (2)C10—C11—C12—C15179.9 (4)
O3—Pr—O1—C254.1 (2)C11—C12—C13—C141.9 (6)
N4—Pr—O1—C271.5 (3)C15—C12—C13—C14179.7 (4)
N6—Pr—O1—C2130.1 (2)C10—C9—C14—C130.5 (6)
N5—Pr—O1—C2145.6 (3)N1—C9—C14—C13177.6 (3)
O4—Pr—O1—C211.8 (3)C12—C13—C14—C90.9 (6)
O2—Pr—O1—C222.5 (2)Pr—O3—C17—C16155.2 (3)
O6—Pr—O1—C290.8 (2)Pr—O3—C17—C1823.4 (4)
O5—Pr—O2—C3159.49 (19)C22—C16—C17—O32.3 (5)
O1—Pr—O2—C320.3 (2)C21—C16—C17—O3179.0 (3)
O3—Pr—O2—C362.5 (2)C22—C16—C17—C18176.3 (3)
N4—Pr—O2—C3151.6 (2)C21—C16—C17—C182.4 (5)
N6—Pr—O2—C316.1 (3)C23—O4—C18—C1910.0 (6)
N5—Pr—O2—C375.5 (2)Pr—O4—C18—C19164.9 (3)
O4—Pr—O2—C3126.6 (2)C23—O4—C18—C17169.8 (3)
O6—Pr—O2—C3115.7 (2)Pr—O4—C18—C1715.3 (4)
O5—Pr—O2—C828.0 (4)O3—C17—C18—O41.8 (5)
O1—Pr—O2—C8167.1 (3)C16—C17—C18—O4176.8 (3)
O3—Pr—O2—C8110.1 (3)O3—C17—C18—C19178.0 (3)
N4—Pr—O2—C835.8 (3)C16—C17—C18—C193.4 (6)
N6—Pr—O2—C8156.4 (3)O4—C18—C19—C20177.3 (4)
N5—Pr—O2—C8112.0 (3)C17—C18—C19—C202.9 (6)
O4—Pr—O2—C846.0 (3)C18—C19—C20—C211.4 (8)
O6—Pr—O2—C856.9 (3)C19—C20—C21—C160.4 (8)
O5—Pr—O3—C1793.8 (3)C17—C16—C21—C200.9 (6)
O1—Pr—O3—C17114.4 (3)C22—C16—C21—C20177.8 (4)
N4—Pr—O3—C179.7 (3)C24—N2—C22—C16174.1 (3)
N6—Pr—O3—C17163.1 (3)C17—C16—C22—N21.5 (6)
N5—Pr—O3—C17143.9 (3)C21—C16—C22—N2179.8 (4)
O4—Pr—O3—C1721.7 (2)C22—N2—C24—C2521.2 (6)
O2—Pr—O3—C1751.7 (2)C22—N2—C24—C29160.7 (4)
O6—Pr—O3—C1787.4 (3)C29—C24—C25—C260.7 (6)
O5—Pr—O4—C18154.0 (2)N2—C24—C25—C26177.3 (4)
O1—Pr—O4—C1830.6 (2)C24—C25—C26—C270.6 (7)
O3—Pr—O4—C1818.3 (2)C25—C26—C27—C280.0 (7)
N4—Pr—O4—C18136.7 (2)C25—C26—C27—C30179.2 (4)
N6—Pr—O4—C1862.1 (2)C26—C27—C28—C290.5 (6)
N5—Pr—O4—C18136.5 (3)C30—C27—C28—C29178.7 (4)
O2—Pr—O4—C1862.7 (2)C27—C28—C29—C240.5 (6)
O6—Pr—O4—C18107.6 (2)C25—C24—C29—C280.2 (5)
O5—Pr—O4—C2331.7 (3)N2—C24—C29—C28178.0 (3)
O1—Pr—O4—C23143.7 (3)Pr—O5—C32—C31161.9 (2)
O3—Pr—O4—C23167.4 (3)Pr—O5—C32—C3317.8 (4)
N4—Pr—O4—C2337.6 (3)C37—C31—C32—O51.0 (5)
N6—Pr—O4—C23123.6 (3)C36—C31—C32—O5179.1 (3)
N5—Pr—O4—C2337.8 (4)C37—C31—C32—C33178.7 (3)
O2—Pr—O4—C23111.7 (3)C36—C31—C32—C331.2 (5)
O6—Pr—O4—C2378.1 (3)C38—O6—C33—C349.4 (5)
O1—Pr—O5—C32154.8 (2)Pr—O6—C33—C34167.1 (3)
O3—Pr—O5—C3224.1 (3)C38—O6—C33—C32171.8 (3)
N4—Pr—O5—C32102.9 (3)Pr—O6—C33—C3211.7 (3)
N6—Pr—O5—C3288.1 (3)O5—C32—C33—C34179.4 (3)
N5—Pr—O5—C32169.5 (3)C31—C32—C33—C340.4 (5)
O4—Pr—O5—C3232.0 (3)O5—C32—C33—O60.5 (4)
O2—Pr—O5—C3295.2 (3)C31—C32—C33—O6179.3 (3)
O6—Pr—O5—C3216.8 (2)O6—C33—C34—C35179.8 (4)
O5—Pr—O6—C3313.66 (19)C32—C33—C34—C351.5 (6)
O1—Pr—O6—C33151.71 (19)C33—C34—C35—C361.0 (7)
O3—Pr—O6—C33171.8 (2)C34—C35—C36—C310.6 (7)
N4—Pr—O6—C3345.3 (2)C37—C31—C36—C35178.2 (4)
N6—Pr—O6—C33111.1 (2)C32—C31—C36—C351.7 (6)
N5—Pr—O6—C3346.4 (2)C39—N3—C37—C31178.9 (3)
O4—Pr—O6—C33109.1 (2)C32—C31—C37—N32.2 (5)
O2—Pr—O6—C33120.4 (2)C36—C31—C37—N3177.7 (3)
O5—Pr—O6—C38170.2 (3)C37—N3—C39—C44172.5 (3)
O1—Pr—O6—C3832.2 (3)C37—N3—C39—C408.4 (5)
O3—Pr—O6—C384.4 (3)C44—C39—C40—C410.8 (5)
N4—Pr—O6—C38130.8 (3)N3—C39—C40—C41179.8 (3)
N6—Pr—O6—C3872.8 (3)C39—C40—C41—C420.5 (5)
N5—Pr—O6—C38137.5 (3)C40—C41—C42—C430.1 (5)
O4—Pr—O6—C3867.0 (3)C40—C41—C42—C45179.4 (3)
O2—Pr—O6—C3855.7 (3)C41—C42—C43—C440.1 (5)
Pr—O1—C2—C1157.8 (2)C45—C42—C43—C44179.5 (3)
Pr—O1—C2—C323.0 (4)C40—C39—C44—C430.7 (5)
C7—C1—C2—O10.3 (5)N3—C39—C44—C43179.8 (3)
C6—C1—C2—O1179.0 (3)C42—C43—C44—C390.4 (5)
C7—C1—C2—C3179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.882.572 (3)137
N2—H2A···O30.861.852.552 (3)138
N3—H3A···O50.861.882.585 (3)138

Experimental details

Crystal data
Chemical formula[Pr(NCS)3(C15H15NO2)3]·H2O
Mr1057.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.6770 (6), 14.2420 (5), 22.2021 (8)
β (°) 105.810 (2)
V3)5073.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.18 × 0.16 × 0.04
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.819, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
39629, 8927, 6217
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.01
No. of reflections8927
No. of parameters589
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.40

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pr—O52.384 (2)Pr—N52.562 (3)
Pr—O12.409 (2)Pr—O42.773 (2)
Pr—O32.419 (2)Pr—O22.790 (2)
Pr—N42.515 (3)Pr—O62.838 (2)
Pr—N62.532 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.882.572 (3)136.7
N2—H2A···O30.861.852.552 (3)137.7
N3—H3A···O50.861.882.585 (3)137.7
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-F., Xian, H.-D. & Zhao, G.-L. (2009). Acta Cryst. E65, m650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Z.-L., Zhao, G.-L., Zhang, P.-H. & Shen, L.-J. (2005). Chem. Res. Chin. 16, 45–48.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds