

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide- κN]silver(I) trifluoromethanesulfonate

Cao-Yuan Niu,* Hai-Yan Zhang and Xin-Sheng Wan

College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niu_cy2000@yahoo.com.cn

Received 24 August 2009; accepted 29 September 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.008 Å; R factor = 0.060; wR factor = 0.175; data-to-parameter ratio = 12.6.

In the title compound, $[Ag(C_{14}H_{10}N_4O)_2]CF_3SO_3$, two N atoms from two independent pyridyl rings of two N'-3cyanobenzylideneisonicotinohydrazide ligands coordinate to the unique Ag^I ion, forming a nearly linear coordination geometry. Adjacent silver complexes are primarily linked together by Ag···N interactions, with Ag···N separations of 2.877 (2) and 3.314 (2) Å. On the other hand, one CF₃SO₃⁻ anion interacts with hydrazone groups of two neighbouring ligands *via* N-H···O hydrogen bonds. These weak intermolecular interactions. In addition, there are Ag···O interactions [2.787 (2) Å] between Ag and O atoms from adjacent chains.

Related literature

For the coordination of silver ions and properties of silver coordination compounds, see: Dong *et al.* (2004); Niu *et al.* (2008, 2009); Sumby & Hardie (2005); Abu-Youssef *et al.* (2007).

Experimental

Crystal data $[Ag(C_{14}H_{10}N_4O)_2]CF_3SO_3$ $M_r = 757.46$ Triclinic, $P\overline{1}$

a = 7.5481 (17) Åb = 14.164 (3) Åc = 14.175 (3) Å $\alpha = 87.895 (4)^{\circ}$ $\beta = 89.918 (4)^{\circ}$ $\gamma = 81.355 (4)^{\circ}$ $V = 1497.2 (6) \text{ Å}^{3}$ Z = 2

Data collection

Bruker APEXII CCD area-detector	8251 measured reflections
diffractometer	5461 independent reflections
Absorption correction: multi-scan	3857 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.023$
$T_{\min} = 0.780, \ T_{\max} = 0.874$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture of
$vR(F^2) = 0.175$	independent and constrained
S = 1.03	refinement
5461 reflections	$\Delta \rho_{\rm max} = 1.04 \text{ e } \text{\AA}^{-3}$
433 parameters	$\Delta \rho_{\rm min} = -0.87 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ag1-N5	2.160 (4)	Ag1-N1	2.169 (4)
N5-Ag1-N1	172.56 (17)		

Table 2

Hydrogen-bond geometry (Å, °).

			D	$D=11\cdots A$
$\begin{array}{l} N2 - H29 \cdots O5^{i} \\ N6 - H28 \cdots O3^{ii} \end{array}$	0.86 (6)	2.27 (6)	3.125 (9)	173 (5)
	0.90 (5)	2.12 (6)	2.982 (7)	161 (5)

Symmetry codes: (i) x, y, z - 1; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXL97* and *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXL97*.

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2248).

References

Abu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Öhrström, L. & Langer, V. (2007). *Inorg. Chem.* 46, 5893–5903.

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & Zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603–5612.

Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373–1382.

Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.

Mo $K\alpha$ radiation

 $0.32 \times 0.22 \times 0.17 \text{ mm}$

 $\mu = 0.82 \text{ mm}^{-1}$

T = 173 K

supporting information

Acta Cryst. (2009). E65, m1285 [https://doi.org/10.1107/S1600536809039579]

Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide- κN]silver(I) trifluoromethane-sulfonate

Cao-Yuan Niu, Hai-Yan Zhang and Xin-Sheng Wan

S1. Comment

In the title compound, (I), the silver(I) ion is coordinated by two nitrogen atoms from two independent pyridyl rings of two different ligands, forming a slightly distorted linear coordination geometry (Fig. 1). Related bond distances and angle around the metal center are shown in Table 1.

There are N—H···O hydrogen bonds between hydrazone groups from 3-cyanobenzylidene isonicotinohydrazide and counteranions CF_3SO_3 ⁻ (Table 2). Besides, there are weak Ag···N interactions between two neighbouring silver complexes with separations of 2.877 (2) and 3.314 (2) Å. Hydrogen bonds and Ag···N interactions link parallel silver monomers together to construct interesting supramolecular one-dimensional chains. Furthermore, two adjacent supramolecular one-dimensional chains are linked together *via* Ag···O interactions, with the separation of 2.787 (2) Å (Fig. 2). All these intermolecular interactions have the contribution to the three-dimensional structure of the title compound.

It is noteworthy that the coordination geometry of the silver metal center can be affected by many factors, such as coordination natures of organic ligands, temperature, counteranions, *etc.* (Dong *et al.*, 2004; Niu *et al.*, 2009; Sumby & Hardie, 2005; Abu-Youssef *et al.*, 2007). We have reported a Ag(I) polymeric structure recently (Niu *et al.*, 2008), which includes a ligand isomeric to the one used in this paper (3-cyanobenzylidene isonicotinohydrazide). It showed that the position of the CN functional group seems to have a great influence on the structures of the resulting compounds (monomeric *versus* polymeric).

S2. Experimental

A solution of AgCF₃SO₃ (0.026 g, 0.1 mmol) in CH₃OH (10 ml) was carefully layered on a CH₃OH/CHCl₃ solution (5 ml/10 ml) of 3-cyanobenzylidene isonicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained.

S3. Refinement

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. The N-bound H atoms were first introduced in calculated positions and refined freely with $U_{iso}(H) = 1.2U_{eq}(\text{carrier N})$. The final difference Fourier map had a highest peak at 0.76 Å from atom H24 and a deepest hole at 0.64 Å from atom S3, but was otherwise featureless.

Figure 1

A view of the Ag^I coordination environment in the monomeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Packing diagram showing three intermolecular interactions: hydrogen bonds are indicated by blue dashed lines, Ag…N interactions by red dashed lines, and Ag…O interactions by green dashed lines.

Bis[N'-(3-cyanobenzylidene) isonicotinohydrazide- κN] silver(I) trifluoromethanesulfonate

Crystal data

$[Ag(C_{14}H_{10}N_4O)_2]CF_3SO_3$	Z = 2
$M_r = 757.46$	F(000) = 760
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.680 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.5481 (17) Å	Cell parameters from 2331 reflections
b = 14.164 (3) Å	$\theta = 2.0 - 25.5^{\circ}$
c = 14.175 (3) Å	$\mu = 0.82 \text{ mm}^{-1}$
$\alpha = 87.895 \ (4)^{\circ}$	T = 173 K
$\beta = 89.918 \ (4)^{\circ}$	Needle, yellow
$\gamma = 81.355 \ (4)^{\circ}$	$0.32 \times 0.22 \times 0.17 \text{ mm}$
V = 1497.2 (6) Å ³	

Data collection

Bruker APEXII CCD area-detector	8251 measured reflections
diffractometer	5461 independent reflections
Radiation source: fine-focus sealed tube	3857 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.023$
φ and ω scans	$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(<i>SADABS</i> ; Bruker, 2005)	$k = -15 \rightarrow 17$
$T_{\min} = 0.780, T_{\max} = 0.874$	$l = -15 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.175$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
5461 reflections	and constrained refinement
433 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0934P)^2 + 1.7184P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.04$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.87$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.93777 (7)	0.21340 (3)	0.17729 (3)	0.0685 (2)
NI	0.8202 (6)	0.1314 (3)	0.0743 (3)	0.0514 (11)
N2	0.5612 (6)	-0.0094 (4)	-0.2091 (3)	0.0513 (11)
N3	0.5110 (6)	-0.0664 (3)	-0.2783 (3)	0.0521 (11)
N4	0.0251 (8)	0.0449 (4)	-0.7023 (4)	0.0721 (14)
N5	1.0223 (6)	0.3075 (3)	0.2790 (3)	0.0537 (11)
N6	1.2968 (6)	0.4563 (4)	0.5530 (3)	0.0513 (11)
N7	1.3579 (6)	0.5147 (3)	0.6166 (3)	0.0505 (10)
N8	1.8445 (9)	0.4103 (5)	1.0418 (4)	0.0814 (16)
O1	0.7156 (6)	-0.1358 (3)	-0.1262 (3)	0.0635 (11)
O2	1.2202 (6)	0.5775 (3)	0.4444 (3)	0.0660 (11)
O3	0.2036 (7)	0.2847 (3)	0.6588 (3)	0.0823 (14)
O4	0.1417 (11)	0.1451 (4)	0.7472 (4)	0.120 (2)
05	0.4103 (8)	0.2082 (5)	0.7702 (4)	0.124 (2)
S3	0.2325 (3)	0.22699 (11)	0.74187 (11)	0.0677 (5)
F1	-0.0500 (8)	0.3171 (5)	0.8159 (4)	0.135 (2)
F2	0.1803 (8)	0.3828 (3)	0.8371 (3)	0.1131 (17)
F3	0.1446 (7)	0.2578 (3)	0.9181 (3)	0.0987 (14)
C1	0.8156 (7)	0.0385 (4)	0.0907 (4)	0.0512 (13)
H1	0.8508	0.0115	0.1513	0.061*
C2	0.7630 (7)	-0.0201 (4)	0.0248 (4)	0.0498 (12)
H2	0.7614	-0.0859	0.0398	0.060*
C3	0.7118 (6)	0.0181 (4)	-0.0644 (3)	0.0425 (11)
C4	0.7153 (9)	0.1136 (4)	-0.0820 (4)	0.0589 (15)
H4	0.6811	0.1424	-0.1422	0.071*

~-				
C5	0.7688 (9)	0.1674 (4)	-0.0114 (4)	0.0617 (15)
H5	0.7693	0.2336	-0.0243	0.074*
C6	0.6637 (7)	-0.0506 (4)	-0.1360 (4)	0.0471 (12)
C7	0.4229 (7)	-0.0216 (4)	-0.3474 (4)	0.0524 (13)
H7	0.4010	0.0463	-0.3488	0.063*
C8	0.3555 (7)	-0.0722 (4)	-0.4237 (3)	0.0473 (12)
C9	0.3767 (9)	-0.1707 (4)	-0.4261 (4)	0.0662 (16)
H9	0.4402	-0.2080	-0.3765	0.079*
C10	0.3077 (11)	-0.2158 (5)	-0.4991 (5)	0.082 (2)
H10	0.3247	-0.2836	-0.4997	0.098*
C11	0.2132 (10)	-0.1621 (5)	-0.5717 (5)	0.0746 (19)
H11	0.1631	-0.1929	-0.6214	0.089*
C12	0.1925 (8)	-0.0643 (4)	-0.5713 (4)	0.0559 (14)
C13	0.2621 (7)	-0.0184 (4)	-0.4967 (3)	0.0484 (12)
H13	0.2454	0.0494	-0.4962	0.058*
C14	0.0978 (8)	-0.0051 (5)	-0.6452 (4)	0.0572 (14)
C15	1.0095 (7)	0.4007 (4)	0.2630 (4)	0.0520 (13)
H15	0.9526	0.4275	0.2064	0.062*
C16	1.0737 (7)	0.4608 (4)	0.3233 (4)	0.0495 (12)
H16	1.0617	0.5273	0.3079	0.059*
C17	1.1562 (7)	0.4243 (4)	0.4069 (3)	0.0442 (11)
C18	1.1695 (10)	0.3279 (4)	0.4243 (4)	0.0723 (19)
H18	1.2229	0.2998	0.4813	0.087*
C19	1.1061 (11)	0.2720 (4)	0.3597 (5)	0.078 (2)
H19	1.1216	0.2048	0.3721	0.093*
C20	1.2263 (7)	0.4947 (4)	0.4696 (4)	0.0477 (12)
C21	1.4326 (7)	0.4693 (4)	0.6902 (4)	0.0510(13)
H21	1.4425	0.4016	0.6954	0.061*
C22	1.5024 (7)	0.5212 (4)	0.7661 (4)	0.0490(12)
C23	1.4820 (8)	0.6210 (4)	0.7655 (4)	0.0575 (14)
H23	1.4170	0.6576	0.7158	0.069*
C24	1 5556 (9)	0.6667 (4)	0.8366 (4)	0.0648 (16)
H24	1.5500 (5)	0.7345	0.8364	0.078*
C25	1.6511 (8)	0.6137 (4)	0.0507 (4)	0.0615 (15)
H25	1 7058	0.6451	0.9553	0.074*
C26	1.6686 (7)	0.5153 (4)	0.9355	0.074 0.0535 (13)
C27	1.0000(7) 1 5949(7)	0.3133(4) 0.4690(4)	0.9100(4) 0.8391(4)	0.0505(13)
H27	1.5949 (7)	0.4012	0.8406	0.0504 (12)
C28	1.0082	0.4012 0.4570 (4)	0.8400	0.000°
C20	1.7005(0) 0.1274(11)	0.7570(4)	0.90+9(+) 0.9328(5)	0.0501(14)
U29 U29	0.1274(11) 1 287 (7)	0.2994 (4)	0.0000 (0)	0.0090(17)
П28 1120	1.20/(/)	0.39/(4)	0.373(4)	$0.04/(13)^{*}$
H29	0.529 (8)	0.051 (4)	-0.21/(4)	0.055 (17)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Ag1	0.0727 (4)	0.0744 (4)	0.0628 (3)	-0.0187 (2)	-0.0167 (2)	-0.0289 (2)
N1	0.053 (3)	0.052 (3)	0.052 (3)	-0.012 (2)	-0.017 (2)	-0.010 (2)

supporting information

N2	0.056 (3)	0.053 (3)	0.044 (2)	-0.004(2)	-0.014 (2)	-0.015 (2)
N3	0.054 (3)	0.058 (3)	0.045 (2)	-0.010 (2)	-0.011 (2)	-0.017 (2)
N4	0.074 (4)	0.091 (4)	0.055 (3)	-0.024 (3)	-0.020(3)	0.005 (3)
N5	0.064 (3)	0.052 (3)	0.046 (2)	-0.010 (2)	-0.015 (2)	-0.009(2)
N6	0.062 (3)	0.053 (3)	0.041 (2)	-0.014 (2)	-0.018 (2)	-0.006 (2)
N7	0.051 (3)	0.060 (3)	0.042 (2)	-0.013 (2)	-0.0110 (19)	-0.009 (2)
N8	0.093 (4)	0.094 (4)	0.059 (3)	-0.016 (3)	-0.029 (3)	-0.005 (3)
01	0.079 (3)	0.049 (2)	0.064 (2)	-0.013 (2)	-0.029 (2)	-0.0073 (18)
O2	0.090 (3)	0.051 (2)	0.059 (2)	-0.014 (2)	-0.028 (2)	-0.0045 (19)
O3	0.120 (4)	0.075 (3)	0.053 (3)	-0.018 (3)	-0.009 (2)	0.007 (2)
O4	0.200 (7)	0.061 (3)	0.108 (4)	-0.045 (4)	0.000 (4)	-0.006 (3)
O5	0.091 (4)	0.168 (6)	0.099 (4)	0.032 (4)	-0.022 (3)	-0.007 (4)
S3	0.0903 (12)	0.0504 (8)	0.0573 (9)	0.0049 (8)	-0.0142 (8)	0.0033 (7)
F1	0.096 (4)	0.161 (5)	0.134 (5)	0.022 (4)	0.016 (3)	0.014 (4)
F2	0.199 (6)	0.058 (2)	0.087 (3)	-0.033 (3)	0.010 (3)	-0.016 (2)
F3	0.163 (4)	0.074 (2)	0.055 (2)	-0.009 (3)	-0.002 (2)	0.0057 (19)
C1	0.053 (3)	0.061 (3)	0.040 (3)	-0.013 (3)	-0.015 (2)	0.000(2)
C2	0.056 (3)	0.044 (3)	0.050 (3)	-0.012 (2)	-0.014 (2)	0.004 (2)
C3	0.039 (3)	0.050 (3)	0.040 (3)	-0.012 (2)	-0.011 (2)	-0.002 (2)
C4	0.082 (4)	0.049 (3)	0.046 (3)	-0.013 (3)	-0.027 (3)	0.004 (2)
C5	0.082 (4)	0.046 (3)	0.058 (3)	-0.014 (3)	-0.028 (3)	0.002 (3)
C6	0.045 (3)	0.052 (3)	0.045 (3)	-0.009 (2)	-0.014 (2)	-0.004(2)
C7	0.054 (3)	0.058 (3)	0.044 (3)	-0.004 (3)	-0.013 (2)	-0.010 (2)
C8	0.047 (3)	0.056 (3)	0.040 (3)	-0.009 (2)	-0.010 (2)	-0.006 (2)
C9	0.079 (4)	0.055 (3)	0.066 (4)	-0.015 (3)	-0.029 (3)	0.000 (3)
C10	0.102 (5)	0.058 (4)	0.088 (5)	-0.016 (4)	-0.037 (4)	-0.009 (3)
C11	0.089 (5)	0.073 (4)	0.066 (4)	-0.023 (4)	-0.033 (3)	-0.013 (3)
C12	0.058 (3)	0.069 (4)	0.045 (3)	-0.021 (3)	-0.012 (2)	-0.008 (3)
C13	0.053 (3)	0.054 (3)	0.040 (3)	-0.011 (2)	-0.009 (2)	-0.008(2)
C14	0.057 (3)	0.074 (4)	0.044 (3)	-0.023 (3)	-0.013 (3)	-0.004 (3)
C15	0.054 (3)	0.063 (3)	0.038 (3)	-0.004 (3)	-0.020 (2)	-0.009 (2)
C16	0.056 (3)	0.047 (3)	0.045 (3)	-0.005 (2)	-0.015 (2)	0.001 (2)
C17	0.049 (3)	0.054 (3)	0.029 (2)	-0.006(2)	-0.006 (2)	-0.004 (2)
C18	0.115 (6)	0.051 (3)	0.050 (3)	-0.013 (3)	-0.037 (3)	0.006 (3)
C19	0.131 (6)	0.043 (3)	0.061 (4)	-0.017 (3)	-0.044 (4)	-0.001 (3)
C20	0.047 (3)	0.047 (3)	0.048 (3)	-0.004 (2)	-0.010 (2)	-0.008 (2)
C21	0.058 (3)	0.058 (3)	0.041 (3)	-0.018 (3)	-0.010 (2)	-0.005 (2)
C22	0.048 (3)	0.057 (3)	0.043 (3)	-0.013 (2)	-0.015 (2)	-0.003 (2)
C23	0.057 (3)	0.059 (3)	0.057 (3)	-0.010 (3)	-0.010 (3)	-0.001 (3)
C24	0.077 (4)	0.053 (3)	0.067 (4)	-0.015 (3)	-0.009 (3)	-0.012 (3)
C25	0.062 (4)	0.070 (4)	0.057 (3)	-0.019 (3)	-0.015 (3)	-0.019 (3)
C26	0.051 (3)	0.067 (4)	0.044 (3)	-0.012 (3)	-0.010 (2)	-0.011 (3)
C27	0.056 (3)	0.053 (3)	0.043 (3)	-0.012 (2)	-0.009 (2)	-0.006 (2)
C28	0.059 (4)	0.073 (4)	0.044 (3)	-0.012 (3)	-0.013 (3)	-0.009 (3)
C29	0.098 (5)	0.047 (3)	0.060 (4)	0.000 (3)	-0.015 (3)	0.008 (3)

Geometric parameters (Å, °)

Ag1—N5	2.160 (4)	С7—Н7	0.9500
Ag1—N1	2.169 (4)	C8—C9	1.381 (8)
N1—C1	1.333 (7)	C8—C13	1.390 (7)
N1—C5	1.335 (7)	C9—C10	1.379 (8)
N2—C6	1.354 (7)	С9—Н9	0.9500
N2—N3	1.381 (6)	C10—C11	1.389 (9)
N2—H29	0.86 (6)	C10—H10	0.9500
N3—C7	1.278 (7)	C11—C12	1.370 (9)
N4—C14	1.140 (7)	C11—H11	0.9500
N5—C15	1.320 (7)	C12—C13	1.404 (7)
N5—C19	1.351 (8)	C12—C14	1.439 (8)
N6—C20	1.359 (7)	С13—Н13	0.9500
N6—N7	1.371 (6)	C15—C16	1.366 (7)
N6—H28	0.90 (5)	C15—H15	0.9500
N7—C21	1.291 (7)	C16—C17	1.386 (7)
N8—C28	1.126 (8)	C16—H16	0.9500
O1—C6	1.215 (6)	C17—C18	1.368 (8)
O2—C20	1.207 (6)	C17—C20	1.513 (7)
O3—S3	1.407 (4)	C18—C19	1.365 (8)
O4—S3	1.432 (6)	C18—H18	0.9500
O5—S3	1.385 (6)	С19—Н19	0.9500
S3—C29	1.798 (7)	C21—C22	1.467 (7)
F1—C29	1.347 (9)	C21—H21	0.9500
F2—C29	1.305 (8)	C22—C27	1.377 (7)
F3—C29	1.310 (7)	C22—C23	1.399 (8)
C1—C2	1.371 (7)	C23—C24	1.379 (8)
C1—H1	0.9500	C23—H23	0.9500
C2—C3	1.389 (7)	C24—C25	1.371 (9)
C2—H2	0.9500	C24—H24	0.9500
C3—C4	1.371 (7)	C25—C26	1.380 (8)
C3—C6	1.514 (7)	C25—H25	0.9500
C4—C5	1.377 (7)	C26—C27	1.389 (7)
C4—H4	0.9500	C26—C28	1.452 (8)
С5—Н5	0.9500	С27—Н27	0.9500
С7—С8	1.453 (7)		
N5—Ag1—N1	172.56 (17)	C11—C12—C13	120.4 (5)
C1—N1—C5	116.7 (4)	C11—C12—C14	122.0 (5)
C1—N1—Ag1	120.4 (3)	C13—C12—C14	117.6 (5)
C5—N1—Ag1	122.4 (4)	C8—C13—C12	119.9 (5)
C6—N2—N3	119.1 (5)	C8—C13—H13	120.0
C6—N2—H29	124 (4)	C12—C13—H13	120.0
N3—N2—H29	116 (4)	N4—C14—C12	177.3 (6)
C7—N3—N2	115.2 (5)	N5—C15—C16	123.6 (5)
C15—N5—C19	116.4 (5)	N5—C15—H15	118.2
C15—N5—Ag1	122.6 (3)	C16—C15—H15	118.2

C19—N5—Ag1	120.7 (4)	C15—C16—C17	119.8 (5)
C20—N6—N7	119.2 (5)	C15—C16—H16	120.1
C20—N6—H28	124 (4)	С17—С16—Н16	120.1
N7—N6—H28	116 (4)	C18 - C17 - C16	117.0 (5)
$C_{21} N_{7} N_{6}$	113 5 (4)	$C_{18} - C_{17} - C_{20}$	1261(5)
05-83-03	113.8 (4)	$C_{16} - C_{17} - C_{20}$	1169(4)
05-53-04	113.0(1) 114.0(4)	C19 - C18 - C17	120.0(5)
03 - 53 - 04	1159(3)	C19-C18-H18	120.0 (3)
05 - 53 - C29	103.2(4)	C17 - C18 - H18	120.0
03 - S3 - C29	105.2(4) 105.1(3)	N_{5} C_{19} C_{18}	120.0 123.1(5)
03 - 53 - 629	103.1(3) 102.8(4)	N5 C10 H10	123.1 (3)
N1-C1-C2	123.6 (5)	C_{18} C_{19} H_{19}	118.4
N1 = C1 = H1	123.0 (5)	C_{10} C_{20} N6	124.5(5)
$C_2 = C_1 = H_1$	118.2	$O_2 = C_2 O_2 = N_0 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	124.3(3)
$C_2 = C_1 = C_1$	110.2	$N_{2} = C_{20} = C_{17}$	120.9(3)
$C_1 = C_2 = C_3$	110.9 (5)	$N_{0} = C_{20} = C_{17}$	114.3(4)
$C_1 = C_2 = H_2$	120.5	N = C21 = C22	120.0(3)
$C_3 = C_2 = C_2$	120.5	N/-C21-H21	119.7
C4 - C3 - C2	118.1(3)	C_{22} — C_{21} — H_{21}	119./
C4 - C3 - C6	125.1 (4)	$C_2/-C_{22}-C_{23}$	119.4 (5)
$C_2 = C_3 = C_6$	116.8 (4)	$C_{2}/-C_{2}/-C_{2}$	118.2 (5)
$C_3 = C_4 = C_5$	119.1 (5)	C_{23} C_{22} C_{21} C_{22} C_{21}	122.4 (5)
C3—C4—H4	120.5	C24 - C23 - C22	120.3 (6)
C5—C4—H4	120.5	С24—С23—Н23	119.8
N1—C5—C4	123.6 (5)	C22—C23—H23	119.8
N1—C5—H5	118.2	C25—C24—C23	119.7 (6)
C4—C5—H5	118.2	C25—C24—H24	120.2
O1—C6—N2	124.3 (5)	C23—C24—H24	120.2
O1—C6—C3	120.7 (4)	C24—C25—C26	120.7 (5)
N2—C6—C3	114.9 (4)	C24—C25—H25	119.7
N3—C7—C8	121.4 (5)	C26—C25—H25	119.7
N3—C7—H7	119.3	C25—C26—C27	119.8 (5)
С8—С7—Н7	119.3	C25—C26—C28	122.2 (5)
C9—C8—C13	118.7 (5)	C27—C26—C28	118.0 (5)
C9—C8—C7	123.2 (5)	C22—C27—C26	120.1 (5)
C13—C8—C7	118.0 (5)	С22—С27—Н27	120.0
C10—C9—C8	121.4 (6)	С26—С27—Н27	120.0
С10—С9—Н9	119.3	N8—C28—C26	178.7 (6)
С8—С9—Н9	119.3	F2—C29—F3	108.7 (6)
C9—C10—C11	119.9 (6)	F2	106.0 (6)
С9—С10—Н10	120.0	F3—C29—F1	106.0 (6)
C11—C10—H10	120.0	F2—C29—S3	113.5 (5)
C12—C11—C10	119.6 (5)	F3—C29—S3	113.9 (4)
C12—C11—H11	120.2	F1—C29—S3	108.1 (5)
C10-C11-H11	120.2		
C6—N2—N3—C7	-176.3 (5)	C15—C16—C17—C20	179.1 (5)
C20—N6—N7—C21	-175.6 (5)	C16—C17—C18—C19	1.3 (10)
C5—N1—C1—C2	0.4 (8)	C20-C17-C18-C19	-177.5 (6)

Ag1—N1—C1—C2	-172.1 (4)	C15—N5—C19—C18	2.4 (11)
N1—C1—C2—C3	0.3 (8)	Ag1-N5-C19-C18	176.9 (6)
C1—C2—C3—C4	-0.5 (8)	C17-C18-C19-N5	-2.7 (12)
C1—C2—C3—C6	177.1 (5)	N7—N6—C20—O2	3.5 (8)
C2—C3—C4—C5	0.1 (9)	N7—N6—C20—C17	-177.5 (4)
C6—C3—C4—C5	-177.3 (5)	C18—C17—C20—O2	174.2 (6)
C1—N1—C5—C4	-0.9 (9)	C16—C17—C20—O2	-4.5 (8)
Ag1—N1—C5—C4	171.4 (5)	C18—C17—C20—N6	-4.8 (8)
C3—C4—C5—N1	0.7 (10)	C16—C17—C20—N6	176.4 (5)
N3—N2—C6—O1	-0.2 (8)	N6—N7—C21—C22	-178.9 (5)
N3—N2—C6—C3	179.8 (4)	N7—C21—C22—C27	-174.4 (5)
C4—C3—C6—O1	156.7 (6)	N7—C21—C22—C23	4.1 (8)
C2-C3-C6-O1	-20.7 (8)	C27—C22—C23—C24	0.8 (9)
C4—C3—C6—N2	-23.3 (8)	C21—C22—C23—C24	-177.6 (5)
C2-C3-C6-N2	159.3 (5)	C22—C23—C24—C25	0.8 (9)
N2—N3—C7—C8	-177.8 (5)	C23—C24—C25—C26	-2.4 (10)
N3—C7—C8—C9	1.9 (9)	C24—C25—C26—C27	2.5 (9)
N3—C7—C8—C13	-179.5 (5)	C24—C25—C26—C28	-179.8 (6)
C13—C8—C9—C10	0.1 (10)	C23—C22—C27—C26	-0.8 (8)
C7—C8—C9—C10	178.7 (6)	C21—C22—C27—C26	177.7 (5)
C8—C9—C10—C11	-0.6 (12)	C25—C26—C27—C22	-0.9 (8)
C9—C10—C11—C12	1.4 (12)	C28—C26—C27—C22	-178.6 (5)
C10-C11-C12-C13	-1.7 (10)	O5—S3—C29—F2	66.4 (6)
C10-C11-C12-C14	179.2 (7)	O3—S3—C29—F2	-53.2 (6)
C9—C8—C13—C12	-0.4 (8)	O4—S3—C29—F2	-174.8 (5)
C7—C8—C13—C12	-179.1 (5)	O5—S3—C29—F3	-58.8 (7)
C11—C12—C13—C8	1.2 (9)	O3—S3—C29—F3	-178.3 (5)
C14—C12—C13—C8	-179.6 (5)	O4—S3—C29—F3	60.0 (7)
C19—N5—C15—C16	-0.8 (9)	O5—S3—C29—F1	-176.3 (5)
Ag1-N5-C15-C16	-175.2 (4)	O3—S3—C29—F1	64.1 (6)
N5-C15-C16-C17	-0.5 (9)	O4—S3—C29—F1	-57.6 (6)
C15—C16—C17—C18	0.3 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
N2—H29…O5 ⁱ	0.86 (6)	2.27 (6)	3.125 (9)	173 (5)
N6—H28…O3 ⁱⁱ	0.90 (5)	2.12 (6)	2.982 (7)	161 (5)

Symmetry codes: (i) *x*, *y*, *z*–1; (ii) *x*+1, *y*, *z*.